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Abstract

Head-Driven Probabilistic Parsing for Word Lattices

Christopher Collins

Master of Science

Graduate Department of Computer Science

University of Toronto

2004

This thesis presents the �rst application of the state-of-the-art head-driven statistical

parsing model of Collins (1999) as a simultaneous language model and parser for large-

vocabulary speech recognition. The model is adapted to an online left to right chart-

parser for word lattices, integrating acoustic, N -gram, and parser probabilities. The

parser uses structural and lexical dependencies not considered by N -gram models, con-

ditioning recognition on more linguistically-grounded relationships. By preferring paths

through the word lattice for which a probable parse exists, word error rate can be reduced

and important syntactic and semantic relationships can be determined in a single step

process. New forms of heuristic search and pruning are employed to improve eÆciency.

Experiments on the Wall Street Journal treebank and lattice corpora show word error

rates competitive with the standard N -gram language model while extracting additional

structural information useful for speech understanding.
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Chapter 1

Introduction

1.1 Overview

The question of how to integrate high-level knowledge representations of language with

automatic speech recognition (ASR) is becoming more important as speech recognition

technology matures, the rate of improvement of recognition accuracy decreases, and the

need for additional information (beyond simple transcriptions) becomes evident. Most

of the current best (here we de�ne \best" in terms of word error rate (WER)) ASR

systems use an N -gram language model of the type pioneered by Bahl et al. (1983).

The prediction of the next word is based on frame-level1 acoustic information and lexical

dependence of Markov order N (i.e., the N previous words). This model has long been

thought linguistically de�cient and far from appropriate by the computational linguis-

tics community. However, only recently has research begun to show progress towards

application of new and better models of spoken language.

One signi�cant barrier, according to Bourlard et al. (1996), has been the continuous

quest for decreasing word error rate (WER). By focusing on gains relative to this metric,

current techniques are continually adapted and incrementally improved, but innovation

1A frame is usually a 10ms interval of acoustic data.
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2 Chapter 1. Introduction

is limited. In this work, we suggest that there are other ways to measure success of spo-

ken language processing, such as ability to educe semantic features, syntactic structure,

and other high-level knowledge. These are areas for which standard N -gram models pro-

vide little information. High-level knowledge is crucial when the ultimate goal is speech

understanding. Jurafsky and Martin (2000) explains the concept of expanding \auto-

mated speech recognition" (discovering the words a person says) to \automated speech

understanding" by extracting the syntax, lexical semantics, and compositional semantics

of an utterance. For example, the same sequence of words can have di�erent meaning,

depending on syntactic, pragmatic, prosodic, and contextual features. Only by applying

unconventional techniques | which may increase WER in the short term | will progress

towards better speech understanding be achieved.

We present new integration of head-driven lexicalized parsing with acoustic and N -

gram models for speech recognition. Our goal is to extract high-level structure from

speech, while simultaneously selecting the best path in a word lattice. Parse trees gener-

ated by this process will be useful for automated speech understanding, perhaps for use

in higher semantic parsing (Ng and Zelle, 1997). In addition to discovering higher-level

syntactic structure useful for semantic interpretation, WER should also decrease with

use of a parsing language model. An N -gram model uses only the previous few words

as conditioning context for selection of the next word. This has proved to be a powerful

model, but it does have severe limitations. For example, consider the word after in the

sentence:

He will buy the Foof Inc. stocks after the price falls below $5.00.

A trigram would need to predict after from the uninformative pair (stocks, Inc.),

whereas a more intuitive model would capture the word will as a powerful predictor.

The distance in this case is 7, but the dependency could have been arbitrarily long in

the string. If we were to consider longer distance relationships, we may have a better

chance at predicting the next word. Expanding to a higher N -gram is not practical, as
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the parameter space increases as jVjN , where V is the vocabulary. Sparse data problems

soon arise.

Collins (1999) presents three lexicalized models which do consider long-distance de-

pendencies within a sentence. Grammar productions are conditioned on head-words

(brie
y, the most important or meaningful word in a sequence). The conditioning con-

text is thus more focused than that of a large N -gram covering the same span, so the

sparse data problems arising from the sheer size of the parameter space are less press-

ing2. The head-driven probabilistic word lattice parser described in chapter 4 is based

on parsing model II of Collins (1999), reviewed in chapter 3. Collins (1999) presents an

example of the model's ability to distinguish between candidate sentences of the type

found in speech recognition, which we repeat below:

� Actual Utterance: He is a resident of the U.S. and of the U.K.

� Speech Recognizer Hypothesis: He is a resident of the U.S. and that the U.K.

The parsing model assigns 78 times higher probability to the correct string, whereas

a simple bigram trained on the same data assigns over 10 times greater probability to

the incorrect string | the bigram (and that) is 15 times more frequent than (and

of). Despite the promise of this example, this model has not been previously applied to

parsing word lattices for speech recognition.

New parsing models and integration techniques have been reported recently, such as

the Structured Language Model (Chelba and Jelinek, 2000) and the lexicalized parser of

Eugene Charniak (Hall and Johnson, 2003; Charniak, 2001). These focus on potential

ways of using more linguistically-meaningful dependence relations to reduce WER for

automatic speech recognition with little attention to high-level information extraction.

Roark (2001) is the work closest in thesis to that presented in this dissertation. It reports

2However, sparse data problems arising from the limited availability of annotated training data be-
come a problem.
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on the use of a lexicalized probabilistic top-down parser for word lattices, evaluated both

on parse accuracy and WER. Our work is di�erent from Roark (2001) in that we use a

bottom-up parsing algorithm with dynamic programming based on the parsing model II

of Collins (1999).

The largest improvements in WER have been seen with N -best list rescoring (Xu

et al., 2002). The best N hypotheses of a simple speech recognizer are processed by

a more sophisticated language model and re-ranked. This method is algorithmically

simpler than parsing lattices, as one can use a model developed for strings, which need not

operate strictly left to right. However, in this dissertation we con�rm the observation of

(Ravishankar, 1997; Hall and Johnson, 2003) that parsing word lattices saves computation

time by only parsing common substrings once.

A word lattice is a compact representation of a large number of utterance hypotheses

(e.g., the most compact combination of the elements of an N -best list). Words are linked

by edges. Word lattices have a unique start and end node, so that any path from the

start to the end represents a complete utterance hypothesis. A standard lattice format

(SLF), developed and documented by the HTK project has been adopted, and will be

explained further in section 2.6.1.

Past work on word lattices has been met with limited success, when measured by

WER improvement, and the systems have been unable to compete with N -gram systems

for speed and eÆciency. Many (e.g., Hall and Johnson, 2003; Weber et al., 1997) have

introduced a pre-parsing stage to prune the input, which is then passed to the more

sophisticated parser. This is in agreement with the stepwise model integration paradigm

of Harper et al. (1994) which recommends that each step overgenerate and pass results

to a subsequent more sophisticated (and often more computationally intensive) step for

additional pruning, eventually arriving at a �nal hypothesis. The experience of others

reveals that the size of word-lattices, sparseness of training data, and the time and space

complexity of chart-parsing will present a signi�cant challenge in our work.
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We test the head-driven statistical lattice parser with word lattices from the NIST

HUB-1 corpus, which has been used by others in related work (e.g., Hall and Johnson,

2003; Roark, 2001; Chelba and Jelinek, 2000). Parse accuracy and word error rates

are reported. We present an analysis of the e�ects of pruning and heuristic search on

eÆciency and accuracy and note several simplifying assumptions common to other re-

ported experiments in this area, which present challenges for scaling up to real-world

applications.

1.2 Statement of Thesis and Objectives

1.2.1 Thesis

The state-of-the-art in speech understanding can be advanced by extracting linguistic

structure from word lattices during speech recognition. Parsing models, such as a head-

driven statistical model, can be formulated in a left-to-right manner in order to work as

language models for speech recognition. It can be shown that the success rate of �nding

the true word sequence for a given utterance can be improved upon using parsing, as the

model selects conditioning which is more linguistically salient than that used by the cur-

rently standard N -gram model. The parameters used by the head-driven parsing model

are roughly orthogonal to lexical N -gram parameters, and thus can be combined with

those of an N -gram model. The combination model will select not only a probable word

sequence, but also one with a probable sentence structure. Assuming a parameterization

and training corpus adapted to the challenges of spoken natural language, a parsing sys-

tem can improve on word-level recognition and extract important structure in a single

step.

1.2.2 Objectives

This document supports the thesis by making the following speci�c contributions:
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1. Overview of existing work: A thorough review of methods for coupling language

and acoustic models for speech recognition, of new language models incorporating

better understanding of linguistic structure, and of recent work in the area of lattice

parsing, is conducted. The review reveals diÆculties in comparing results in this

area, a lack of focus on extracting linguistic structure from spoken language, and

a need for a standard word lattice corpus. The overview also presents promising

results from some preliminary studies.

2. New standards for evaluation: The inadequacy of word error rate as the only

measure of speech recognition success is described. Other measures, such as parsing

accuracy, are suggested as important measures for speech understanding tasks.

3. A chart parser for lattices: Amodular chart parser for word lattices is presented.

This has been implemented using Java. The grammar and tagger modules can be

easily changed to incorporate other parameterizations of statistical parsing.

4. Investigation of head-driven statistical parsing as a model of language:

The chart parser for lattices is implemented with a current state-of-the-art statis-

tical parsing model | model II of Collins (1999). The implementation is tested on

strings and word lattices, and both parse accuracy and word error rate are com-

pared with related work. An evaluation of how heuristic search and pruning a�ects

eÆciency and accuracy is presented.

1.3 Overview of the Dissertation Structure

The remainder of this dissertation is structured as follows:

Chapter 2: State of the Art in Language Modeling for Speech reviews the ba-

sics of language modelling, including a critical evaluation of how success is currently

measured. Methods for coupling language models with speech recognition systems
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are described, and examples from the current literature, including recent attempts

to parse word lattices, are compared.

Chapter 3: Review of the Probabilistic Model presents the parameterization of

the head-driven statistical parsing model used in the word lattice parser. Smooth-

ing methods for parameter estimation are presented as a way to ameliorate sparse

data problems.

Chapter 4: Head-Driven Parsing for Speech Recognition begins with a descrip-

tion of the parsing model of chapter 3 as a language model for speech recognition.

The algorithms and main data structures for word-lattice tagging and left-to-right

probabilistic lattice chart parsing are explained. The parser operates on trees with

at most binary branching, so the mapping from Penn-Treebank-style trees to parser

format trees is explained. Finally we discuss the dynamic programming restrictions

imposed on the model by computational resource limitations, and the practical de-

tails and achievements of the implementation are outlined.

Chapter 5: Experimental Results presents an evaluation of the word lattice parser

over strings and word lattices. Standard measures for parsing and speech recog-

nition performance are presented, along with an analysis of the impact of the re-

strictions imposed on the model. The time and resources required to parse N -best

lattices and N -best lists are compared and the eÆciency and utility of lattice pars-

ing is con�rmed.

Chapter 6: Conclusions is an analysis of the main contributions and a presentation

of opportunities to build upon this research.
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Chapter 2

State of the Art in Language

Modeling for Speech

2.1 Background

Speech recognition by humans is an extremely complex process, drawing on an intricate

acoustic sensory system, a vast knowledge base, and a powerful reasoning system (Brill

et al., 1998). Emulating this behaviour with a computer has long been a goal of compu-

tational linguistics and engineering research, and one assumed to be a future possibility

by everyone from scientist Alan Turing to �lm-maker Stanley Kubrick. The realization

of this goal has proved much more diÆcult than anticipated.

The task is traditionally divided into two levels | automatic speech recognition

(ASR) and its extension, automatic speech understanding (ASU). ASR has been de�ned

as the automated mapping from a spoken utterance to a word string; the use of high-level

knowledge has been distinguished as automated speech understanding (Chelba, 2000).

However, we take the view that the recognition of an utterance can be improved by inte-

grating the high-level information directly into the search for the true word string, thus

the traditional senses of recognition and understanding cannot be decoupled. Speech

9
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understanding in this work will be considered the task of using the high-level informa-

tion extracted during recognition | such as using headwords in parse trees to query a

database.

We de�ne ASR as an automated mapping from a spoken utterance to a range of pos-

sible levels of information | lexical, syntactic, semantic, and pragmatic. These levels of

information each have a variety of uses, such as transcription of speech (many commer-

cial software applications attempt this), translation to another natural language (such

as the VERBMOBIL project; http://verbmobil.dfki.de), question answering (such as

with the TINA semantic analysis system (Sene�, 1992)), emotion detection (Polzin and

Waibel, 1998), or in assistive technology devices for persons with disabilities.

The question of how to integrate language models with speech recognition systems

can currently be answered with three coupling paradigms: tight, incremental, and

sequential. First, we will review general speech recognition terminology and structure

common to all three coupling methods.

The di�erent types of knowledge useful for speech recognition are shown in �gure 2.1.

Harper et al. (1994) arranges these into the hierarchy shown, based on evidence that to

use (or extract) a type of information, the previous must be available.

Prosody is a special level of knowledge, grouped as low-level knowledge and as high-

level knowledge. Broadly, prosody is accepted as properties of speech related to segments

larger than phones (Jurafsky and Martin, 2000). These properties include pitch, pauses,

relative duration, intonation, voice quality, and energy, which more generally can be

considered to compose accentuation, phrasing, and pauses. Ladd and Cutler (1983) fur-

ther re�nes this de�nition in terms of concrete features, such as acoustic parameters of

pitch, duration, and intensity, and abstract features of phonological organization on the

suprasegmental level. Prosody can be considered high-level knowledge, for example, when

it is used to indicate a question sentence, which can a�ect syntactic and semantic inter-

pretation. Prosodic features can also aid the acoustic model on a low level. For example,
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Figure 2.1: Hierarchy of knowledge precedence between spoken language sources
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homographs and homophones (e.g., permit vs. permit) in English can be disambiguated

by pitch accent.

Speech parsing for understanding is syntactically more diÆcult than text parsing for

understanding. One reason is that punctuation is not supplied, so phrasal boundaries

are not delineated1. Prosody can be used to detect phrasal and sentential boundaries,

sometimes to a greater extent than punctuation does. Semantic and pragmatic analysis

can be aided by use of accentuation (through prosodic phrasing and pitch range reset).

For example, information on focus (Beckman, 1997) can disambiguate scope ambiguities

(e.g., \[old men] and women are holding a protest." vs. \[old men and women] are holding

a protest."). Dialogue analysis can be aided by prosodic information in the classi�cation

of dialogue acts (e.g., \�fteen." vs. \�fteen?".)

Despite the great potential, there are also a variety of diÆculties that arise when

prosody is added to an ASR system (Kompe, 1997). For example, pitch accent can have

at least two meanings | as emphasis or indicating a question. Di�erent speakers have

been found to realize prosodic events through di�erent means. Prosodic information may

be redundant if semantic and syntactic analysis can disambiguate an utterance, leaving

the bene�t of additional information debatable. One negative result of multiple prosodic

realizations of events is that it is diÆcult (and thus-far impossible) to de�ne a functional

mapping between prosodic boundaries and syntactic boundaries.

ASR systems use di�erent levels of knowledge, depending on their goals, and, as

we will see in coming sections, are sometimes restricted by their coupling paradigm.

We have explored the use of prosody in detail. Pragmatics have also played a role in

speech recognition (e.g., Levin et al., 1995; Polzin and Waibel, 1998; Swerts et al., 2000).

Speci�cally, dialogue context as a pragmatic information source has been shown to aid

dynamic generation of expectations of what a user is likely to say (Young et al., 1989;

1This is only the beginning of the problem | word boundaries are also unknown. In addition, the
signal can be very noisy.
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Figure 2.2: Acoustic pre-processing of waveform speech data.

Roy et al., 2000). Use of acoustic, lexical, syntactic, and semantic levels of knowledge

will be explored in the remainder of this chapter.

Each of the coupling schemes described in the following sections includes an acoustic

pre-processing stage, shown in �gure 2.2. This stage includes signal processing | extract-

ing acoustic features such as pitch, duration, and intensity from digitally encoded speech.

We also group phone likelihood estimation in this stage. Gaussian models and neural

networks are two standard models for computing these phone (or sub-phone) probabili-

ties from the spectral vectors extracted in signal processing. Our discussions of language

model coupling methods will assume this pre-processing has occurred. The interested

reader can �nd further detail about signal processing, phone-likelihood estimation, and

general ASR in (Jurafsky and Martin, 2000).

2.2 Basic Language Modelling

The traditional view of ASR is to formulate the task as automatic transcription from

speech to text. This basic task underlies the extraction of other high-level knowledge as

well, so we will use it to develop our de�nition of a language model. Chelba (2000) gives

a full description of language modelling. Following in this section is a summary of that

work.
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Given some vector of acoustic features A = (a1; a2; : : : ; an) extracted by acoustic

pre-processing, the task of speech recognition is to �nd the most likely word sequence

W = (w1; w2; : : : ; wn) which would produce A. Note that we simplify by assuming a 1:1

correspondence between acoustic features and words | in reality, the acoustic features are

usually generated in 10ms intervals and must be combined into groups corresponding to

words. This process of �nding word-boundaries is called segmentation and is a challenging

problem in itself (Jurafsky and Martin, 2000). The most successful approach to the

problem of �nding W given A has been the Bayesian statistical approach introduced by

(Bahl et al., 1983). In this formulation, the probability of P (W jA) is maximized, yielding

sentence hypothesis Ŵ :

Ŵ = argmax
W2L

P (W jA) = argmax
W2L

P (AjW ) � P (W ) (2.1)

The acoustic pre-processing step (including extracting the features) models the acous-

tic probabilities P (AjW ). The task of the language model is then to calculate prior

probabilities of word sequences P (W ). An additional non-trivial task is how to search

the space of W word sequences in language L that could give rise to A, to �nd the best

hypothesis Ŵ . The search space for some string W of length n is jVjn where V is the vo-

cabulary. Practical considerations usually require restriction of this vocabulary to some

�xed word set (in tens of thousands). Words not in the vocabulary are then mapped to

one or more classes of unknown words. Probabilities are often estimated from a training

corpus. The corpus can also be used to build the vocabulary.

The language model is de�ned by its parameterization � of the source that generates

the language, where � 2 �, � is the parameter space. This parameterization, �, is also

referred to as the modelling assumption about the language source.

The task of language modelling then becomes the selection of a parameterization of

the source. Generally, a source model should operate in a sequential left-to-right manner,

to allow for eÆcient searching as word hypotheses become available from the acoustic

model. This, as we will see, is not a requirement for successful language modelling,
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but rather a requirement for tight and incremental coupling with the acoustic model, as

de�ned below. Left to right computation of probabilities P (W ) can be formulated as a

conditional probability chain P (w1; w2; : : : ; wn) = P (w1) �
Qn

i=2 P (wijw1: : :wi�1).

Parameterization is then restricted to models which compute pre�x probabilities, the

probability of some word wi given the history (w1: : :wi�1):

P�(wijw1: : :wi�1); � 2 �; wi 2 V (2.2)

The most successful models of this type are N -gram models, which condition words

on a restricted history, making a Markov assumption of order N about the language

source:

P�(wijwi�1: : :w1) � Pn(wijwi�1: : :wi�n+1) (2.3)

Note that, following Chappelier et al. (1999), we refer to all probabilistic models

applied to speech recognition as language models, although they may not strictly �t the

de�nition given above. We use high-level language model to refer to language models

using linguistic knowledge above the level used by N -gram models. When we refer to the

strict de�nition of language model, adhering to equation (2.2), we will use word-predictive

language model.

2.3 Expanding the Measures of Success

Bourlard et al. (1996) states that the focus on continual small incremental improvements

in WER and the resulting avoidance of techniques which may result in increased WER are

traps which can result in a lack of innovation in ASR. They suggest many creative ways

to improve ASR which may result in increased WER during development | including

incorporating high-level syntactic knowledge. It is important to have new measures of

success, and not to abandon early work when increased WER is the result. First, we

should examine the generally accepted metrics | WER and perplexity.
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Given the task of simply generating a transcription of speech, WER is a useful and

direct way to measure language model quality for ASR. WER is the count of incorrect

words in hypothesis Ŵ per word in the true stringW . For measurement, we must assume

a priori knowledge of W and the best alignment of the reference and hypothesis strings2.

Errors are categorized as insertions, deletions, or substitutions.

Word Error Rate = 100
Insertions + Substitutions + Deletions

Total Words in Correct Transcript
(2.4)

An example of WER calculation, taken from the HUB-1 corpus used in this work:

REF: he said THE YEN could RISE due to the REALIGNMENT

HYP: he said AND could ARISE due to the REALLY MEANT

ERRORS: S D S S I

5 errors per 10 words in transcription: WER=50%

It is important to note that most models | Mangu et al. (2000) is an innovative

exception | minimize sentence error. Sentence error rate is the percentage of sentences

for which the proposed utterance has at least one error. Thus models (such as ours) which

optimize prediction of test sentences Wt, generated by the source, minimize the sentence

error. Thus even though WER is useful practically, it is formally not the appropriate

measure for the commonly used language models. Unfortunately, as a practical measure,

sentence error rate is not as useful | it is not as �ne-grained as WER.

Perplexity is another measure of language model quality, measurable independent

of ASR performance (Jelinek, 1997). The perplexity of the language modelling task

is, roughly, the average number of choices at any decision point. The perplexity is

minimized when the true source model is known and exactly modelled. For a given

perplexity, recognition accuracy can be improved by improving the acoustic model or by

incorporating additional high-level information into the recognition process. Perplexity

is related to the entropy of the source model which the language model attempts to

2SCLITE (http://www.nist.gov/speech/tools/) by NIST is the most commonly used alignment
tool.
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estimate. For an N -word utterance, perplexity of the model can be measured:

PPL(M) = exp (�1=N
NX

i=1

ln[PM(wijw1: : :wi�1)]) (2.5)

These measures, while informative, do not capture success of extraction of high-level

information from speech. Task-speci�c measures should be used in tandem with ex-

tensional measures such as perplexity and WER. For example, for a speech recognition

system with the goal of personalized interaction, we should measure speaker identity

recognition success, which may be based on word-choice, prosodic cues, syntactic struc-

ture, acoustic features, etc. For a dialogue system, measures of success on a pragmatic

level would be needed. These measures are closely linked to recognition because the

search for the true utterance can be directed by the type of information sought, resulting

in a simultaneous search, such as the search for the best parse tree and utterance carried

out in this work.

Roark (2002), when reviewing parsing for speech recognition, discusses a modelling

trade-o� between producing parse trees and producing strings. Most models are evaluated

either with measures of success for parsing or for word recognition, but rarely both.

Parsing models are diÆcult to implement as word-predictive language models due to their

complexity, so perplexity is not easy to measure. Traditional (i.e., N -gram) language

models do not produce parse trees, so parsing metrics are not useful. However, Roark

(2002) argues for using parsing metrics, such as labelled precision and recall3, along with

WER, for parsing applications in ASR. Weighted WER is also a useful measurement,

as the most often ill-recognized words are short, closed-class words, which are not as

important to speech understanding as phrasal head words. For example, Weber et al.

(1997) uses uni�cation grammars to extract meaning by parsing word lattices in the

context of speech-to-speech translation in VERBMOBIL. In this case, weighted word

error, focusing on content words, is an appropriate measure.

3Parse trees are commonly scored with the PARSEVAL set of metrics (Black et al., 1991).
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Figure 2.3: Tight coupling of acoustic and language model.

Successful extraction of high-level information has been shown to be important in

real-world applications of speech recognition. The TINA system (Sene�, 1992), a widely-

used syntactic and semantic analyzer, also acts as a high-level language model to rescore

N -best lists for speech recognition (see section 2.6.3 for an explanation of N -best list

rescoring). The system uses a hand-written probabilistic context free grammar with

feature uni�cation, trained on example sentences. It produces parse trees, annotated

with semantic information, such as thematic role assignment. The relationships in the

parse trees have been used in dialogue systems of the VOYAGER project to answer

questions and complete tasks in restricted domains, such as booking an airline 
ight or

checking the weather. Clearly, for such applications, the ability to gather enough semantic

information to correctly carry out the task is more important than simple WER.

For real-world applications, time and space eÆciency are also important measure-

ments of success.

2.4 Tight Coupling

A tightly coupled system is one which integrates all the sources of knowledge in a highly

interdependent set of processes which cannot be decoupled. Figure 2.3 shows a general

schematic of a tightly coupled ASR system. Language model probabilities are integrated

with phone likelihoods in decoding of hidden markov models (HMM). Other methods,

such as phone-level parsing have been abandoned in favour of HMM. Decoding algorithms
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such as the Viterbi algorithm are used for the simplest language models, such as the

lexical bigram model | the most common form of language model used in tight coupling.

Trigram probabilities have been integrated with the acoustic probabilities using A* search

(Jelinek, 1969).

The main challenge for tight coupling is e�ectively integrating knowledge sources.

There have been several attempts, with limited success | the resulting systems are usu-

ally orders of magnitude slower and produce sub-optimal results. Moore et al. (1989),

applies tight coupling using a uni�cation-based CFG to generate word transition proba-

bilities for a Viterbi decoder. Goddeau (1992) uses a probabilistic LR parser to generate

word transition probabilities for HMM decoding. Zue et al. (1991) introduces a method

to generate bigram probabilities from a higher-language model by using the language

model to generate random sentences from which the bigram probabilities are trained.

More recently, Jurafsky et al. (1995) extends that model to general stochastic context

free grammar (SCFG)s by extending the top-down Earley parsing algorithm to compute

word transition probabilities. That work uses the SCFG to smooth the bigram grammar

and add structural constraints. The bigram probabilities are generated from the SCFG

by computing the characteristic N-gram in closed form by the method of Stolcke and

Segal (1994). The characteristic N -gram method calculates expected bigram counts for

strings generated by nonterminals in the grammar by solving a system of linear equations

derived from the SCFG rule probabilities. The smoothed bigram model is then used as

the language model coupled with the acoustic model in the HMM decoding process. A

5% absolute improvement in WER is achieved with the SCFG-smoothed bigram over

the standard bigram. Direct combination of the dynamic programming computations

from the Earley parser and Viterbi decoder are computationally infeasible, given the

cubic time of the parser, and an input length equal to the number of 10ms frames. It

is generally agreed that incorporation of acoustic/phonetic probabilities with high-level

syntactic and semantic constraints is computationally intractable (Harper et al., 1994).
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Figure 2.4: Incremental coupling of basic ASR with an additional language model.

Even if it were possible, it would be challenging to scale up the system to realistic tasks.

2.5 Incremental Coupling

Incremental coupling is de�ned by the use of time-synchronous feedback from the lan-

guage model to the acoustic model, as shown in �gure 2.4. The components cannot be

procedurally separated; the coupling requires that component models work in a bidirec-

tional cooperative fashion, �ltering the set of hypotheses at each time step. Unlike tight

coupling, there are two or more distinct language models or components, rather than

compiling the higher level language models directly into the HMM decoding process.

It di�ers from sequential coupling by allowing two way communication | the acoustic

model generally sends next word hypotheses to the language model, which generates

word transition probabilities based on the pre�x sequences already proposed. Compo-

nents of a sequential system are procedurally separate, and communication is one-way.

Chappelier et al. (1999) includes incremental coupling within tight coupling due to its

time-synchronous nature, but we believe there is a fundamental di�erence deserving of

separate consideration.

Incremental coupling of LR parsing with a HMM has been reported (e.g., Lavie and

Tomita, 1993; Kita et al., 1989) | the LR parser predicts phones, which are veri�ed
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by the HMM. Wachsmuth et al. (1998) proposes an extension of LR parsing with a ro-

bust integration of a (non-probabilistic) context free grammar with statistical acoustic

modelling. Violations of the grammar rules are handled in a 
exible way; penalty scores

are assigned by the parser to ungrammatical constructions during the word-veri�cation

phase. Earlier work used binary grammar decisions, completely eliminating ungrammati-

cal constructs from consideration. The technique of Wachsmuth et al. (1998) is useful for

domains where parser training corpora are not available, and statistical parsing cannot

be used. A tree of parse stacks is used to track the progress of recognition and parsing.

Weber (1994) reports incremental coupling with a pseudo-probabilistic typed uni�-

cation grammar, which can operate in predictive mode (supplying next word hypotheses

to the acoustic model), or veri�cation mode (calculating word transition probabilities for

hypotheses generated by the HMM).

The SCFG which was used in pseudo-tight coupling by Jurafsky et al. (1995) to

smooth bigram probabilities was also applied to incremental coupling with the Viterbi

decoder. The SCFG provided approximate probabilities (true transition probabilities

could not be calculated given only a pre�x). The parser probabilities were then used to

�lter next word hypotheses of the decoder. The resulting system showed the same per-

formance as the SCFG-smoothed bigram used in tight coupling | 5% absolute decrease

in WER over the standard bigram model, with a 36% increase in computation time.

2.6 Sequential Coupling

Sequential coupling, as shown in �gure 2.5, consists of one way communication between

the acoustic model and one or more language models which successively �lter hypotheses

to arrive at a �nal proposal for an utterance, parse tree, or representation from some

other level of knowledge (see �gure 2.1).

This form of coupling has been the most successful in terms of computational eÆ-
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Figure 2.5: Sequential coupling of basic ASR with additional language model(s).

ciency, WER reduction over standard N -gram models, and ability to apply high-level

knowledge to the task of ASR. Sequential coupling does have several challenges not

present in other forms of coupling. The models in the stream must overgenerate, pro-

viding ample hypotheses for the next models to choose from. Otherwise, one risks bias

from earlier models in
uencing decisions downstream. Overgeneration is also important

in order to reduce risk of eliminating the correct string, parse tree, or other form of

information early in the sequence. Measures such as the intermediate oracle word error

rate4 can be used to evaluate each of the stages separately.

Two major variations of this coupling scheme have been developed | N -best list

rescoring and parsing, and lattice rescoring and parsing. Both use high-level language

models operating at the word level. They di�er in the format of the data transferred

between stages. These variations are described in following subsections. First, we will

de�ne word lattices, and explore the signi�cance of and ways to select N for N -best lists

and lattices used in sequential coupling.

2.6.1 Word Lattices

The output from any level of an ASR system can be formed into a word-lattice. Ortmanns

and Ney (1997) describes an algorithm constructing word lattices for large vocabulary,

4The WER of the hypothesis which best matches the true utterance, i.e., the lowest WER possible
given the hypotheses set.
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continuous speech recognition. A word lattice is simply a compact representation of a

large number of full utterance hypotheses. A standard lattice format (SLF), developed

and documented by the HTK project (http://htk.eng.cam.ac.uk), has been generally

adopted. A word lattice L = (V;E) in SLF format is a directed acyclic graph (DAG)

where:

V The set of vertices, or nodes. Vertices are de�ned by a timestamp, measured from the

unique start time of the lattice, and labelled with a word.

E The set of labelled, weighted edges, representing the word utterances. A word w is

hypothesized over edge e if e ends at a vertex v labelled w. The word starts at

the time associated with vertex vestart and ends at the time associated with vertex

veend . Edges are associated with transition probabilities. In SLF, multiple scores

(not necessarily strict probabilities) can be associated with each edge:

acoustic score is the score assigned by the acoustic model, such as by a series

of HMMs in the acoustic pre-processing step. The score is an estimate of

P(aijwi), the conditional probability of the acoustic observation ai for the

time frame of the current word, given word hypothesis wi.

language model (prior) score is the score assigned by a language model, using

one of the several forms of coupling. The lattices of the HUB-1 corpus, for

example, are annotated with trigram scores trained using a 20 thousand word

vocabulary and 40 million word training sample (see section 5.3).

Each path through a word lattice represents a string hypothesis. A simpli�ed example of

a lattice is shown in �gure 2.65. As discussed in section 2.6.2, word lattices can include

many paths resulting in the same string hypothesis. This occurs when a word boundary

is unclear. For example, if the boundary between really and meant in �gure 2.6 was

5The actual lattice on which this example is based contains 36,814 paths.
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Figure 2.6: A simpli�ed word lattice. Dotted lines represent time alignments.

unclear, many vertices for really (a vertex is labelled with a time and the word ending

at that vertex) would be added to the lattice (one for each possible end-time for the

word), resulting in many edge pairs producing really meant over the same total time

span. Hall and Johnson (2003) minimizes the impact of this by converting a SLF lattice

to a �nite state machine (FSM) and minimizing the FSM to have only one path for each

unique string.

Chelba (2000) reports WER reduction by rescoring word lattices with scores of a

structured language model (Chelba and Jelinek, 2000), interpolated with trigram scores.

Word predictions of the structured language model are conditioned on the two previous

phrasal heads not yet contained in a bigger constituent. This is a computationally in-

tensive process, as the dependencies considered can be of arbitrarily long distances. All

possible sentence pre�xes are considered at each extension step. Roark (2002) directly

rescores word lattices using a parser that makes a Markov assumption akin to the assump-

tion of N -gram models. Lattice reentrancies (points at which divergent paths rejoin) are

used to determine Markov order. Once a reentrant point is passed, the parse pre�xes up

to that point are �xed. The Markov restriction allows rescoring of the entire acoustic

lattice to be computationally feasible. Lattice rescoring improves the posterior probabili-

ties of edges in the lattice. By rescoring the lattice, no information is eliminated, and the

entire lattice can be used as input to another system. For example, modern multi-pass

recognition systems use lattices to adapt to individual speakers.
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Extracting a single best guess of the true utterance which created the lattice is more

common than lattice rescoring. Bottom-up chart parsing, through various forms of ex-

tensions to the CKY algorithm, has been applied to word lattices for speech recognition

(e.g., Hall and Johnson, 2003; Chappelier and Rajman, 1998; Chelba and Jelinek, 2000).

Full acoustic and N -best lattices �ltered by trigram scores have been parsed. Hall and

Johnson (2003) uses a best-�rst probabilistic context free grammar (PCFG) to parse

the input lattice, pruning to a set of local trees (candidate partial parse trees), which

are then passed to a version of the parser of Charniak (2001) for more re�ned parsing.

WER for parsing the full acoustic lattices is higher than that for the N -best lattices,

even though oracle WER is higher for N -best lattices. This suggests the trigram model,

through pruning, is contributing to the WER improvement. However, unlike (Roark,

2001; Chelba, 2000), Hall and Johnson (2003) achieves improvement in WER over the

trigram model without interpolating its lattice parser probabilities directly with trigram

probabilities.

Weber et al. (1997) presents bottom-up parsing using a pseudo-probabilistic HPSG

uni�cation grammar with features including speech phenomena. The result is unaccept-

ably slow on a full acoustic lattice, so a stage-one approximation of the grammar is used

to create an N -best lattice to pass to the full grammar in stage two. Acoustic phenomena

are also considered in the parser of Zhou and Lua (1999), a PCFG for Mandarin Chinese

word lattices which include tonal features.

Lattice parsing (with the exception of Weber et al. (1997) and Roark (2001)) has

focused on using parsers to reduce word error rates, with little attention to the quality of

the parse result. Xu et al. (2002), using N -best list rescoring, shows a positive correlation

between parse accuracy and improved WER. Brill et al. (1998) shows that humans use

language structure to perform recognition. We have also discussed (see section 2.3) the

need to develop new measures of success for speech recognition, and new approaches,

that | at least in their initial development | may result in increased WER. Motivated
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by this, in the following chapters, we discuss application of the current best lexicalized

parsing model to the task of parsing word lattices in a sequential coupling system.

2.6.2 The Incomparability of N

Acoustic vs. N-best Lattices

Many of the works cited in this section (e.g., Hall and Johnson, 2003; Roark, 2001;

Chelba and Jelinek, 2000) compare rescoring of an N-best lattice of hypotheses to results

produced from rescoring an acoustic word lattice. It is important to understand the

distinction. An acoustic lattice is the union of all hypothesized strings produced by the

acoustic model, for example, by decoding the HMM in �gure 2.5. An N -best lattice is the

union of N paths through the acoustic lattice. However, the lattices often di�er by more

than scale. If scale were the only factor, then an equivalent to the N -best lattice could

be created by tightening the beam search of the HMM decoder. Commonly, additional

knowledge (e.g., trigram model scores) is used to prune the acoustic lattice to its N -best

paths.

Whether or not the high-level language model applied to the N -best lattice explic-

itly uses the trigram probabilities, it is still informed by them. Improvements due to

the trigram �ltering cannot be decoupled from the usefulness of the high-level model.

Comparisons are often made between results of a high-level model applied to an acoustic

lattice and the same model applied to an N -best lattice (Hall and Johnson, 2003). This

comparison is not informative about the contribution of high-level model alone, since

the N -best lattice is informed by the trigram model used to prune. We propose a better

comparison to isolate the contribution of the high-level model | the WER of the trigram

model applied to the acoustic lattice compared with the high-level model applied to the

acoustic lattice. Unfortunately, application of the high-level model to the full acoustic

lattice is often computationally intractable. Therefore, we too compare the best path
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through the N -best lattice, using the same trigram probabilities used for pruning to N -

best, with the high-level language model applied to the N -best lattice. This yields the

improvement achieved by using both models, over the trigram alone.

Selection of N

The selection of N is highly variable across work in this area. Often, one measures

the oracle WER for various N , and chooses some N which gives a balance between

the size of the lattice passed to the high-level model, and the risk of eliminating the

true hypothesis during N -best path selection. However, this process is diÆcult, even for

the small HUB-1 corpus used in this work. Word lattices from di�erent speakers, with

di�erent levels of background noise, and with di�erent words, will di�er greatly in their

packing. Ambiguous words (especially long words), poor conditions, or unclear speech

can generate a highly packed lattice. Such a lattice has many parallel edges and orders

of magnitude more paths than a lattice generated from a short, clear utterance. For

example, if a word boundary is unclear in a speech signal, the resulting word lattice may

contain hundreds of hypotheses, each di�ering only by milliseconds in the time of the

word-boundary, in addition to many paths containing di�erent word hypotheses. It is the

case for the HUB-1 lattices that the paths di�ering by the time of one word-boundary

often have similar total probabilities (the product of the acoustic and trigram scores of

each edge). Figure 2.7 (A) illustrates how it is possible that for �xed N , we could get an

N -best lattice or list with only one surface string realization, even if the (N +1)-st path

is of similar probability and has a di�erent surface string realization. Conversely, �gure

2.7 (B) shows an example for which one could unnecessarily burden a high-level language

model with the union of N paths if a small number of paths are strongly preferred by the

trigram and acoustic models. As �xed N results in di�erent numbers of string hypotheses

in a lattice (depending on acoustic lattice structure), choosing a �xed N is certain to

provide di�erent oracle WER for each sample. One can solve this problem by attempting
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realignment

realignment

realignment

realignment

really meant

ithe

ithe

realign

refinement

real I

realignment

really meant

need

meat

(B)

(A)

Figure 2.7: Problems with �xed N for N -best lattices: (A) This lattice has an ambiguous

time for the realignment word-boundary. We assume all paths in the lattice have very

similar total probability, and that the correct path, really meant, has the lowest total

probability. An N -best lattice with N � 4 would contain only one string hypothesis,

eliminating the correct hypothesis from consideration by a higher language model. (B)

If the paths in this lattice have widely di�ering total probabilities, with the correct really

meant path receiving the highest probability, a �xed N -best lattice with N � 1 would

unnecessarily burden a high-level language model with multiple unlikely hypotheses. A

variable N , based on a beam-search, could set N=5 for (A) and N=1 for (B).
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to select some N large enough to reduce the average N -best oracle WER to within some

factor of the oracle WER of the acoustic model. This would be diÆcult to select, and

would likely result in lattices larger than could be processed by most high-level language

models. Dynamic selection of N , such as choosing the union of all paths with a total

score (the product of acoustic and trigram scores along each edge) within some beam of

the best, would provide a better balance of computational burden and bias of the trigram

model. We leave this as a consideration for future creation of lattice corpora.

The lattice corpus used in this work was previously pruned to the union of the 50-best

paths (Roark, 2001) using the A* search of Chelba (2000). We parse on these lattices,

for comparability, and because using the full acoustic lattices is currently too large for

parsing by our system. Reimplementing the A* search to create dynamic size N best

lattices is beyond the scope of this project.

2.6.3 N-Best Lists

High-level language models have been applied to speech recognition through N -best list

rescoring6. The N complete utterance hypotheses with the best total score are passed

from earlier stages to later stages. An N -best list can be thought of as an \unpacked"

N -best word lattice; each element of the N -best list is a path through the corresponding

lattice. The total score for a complete utterance hypothesis, or path through the word

lattice, is the product of the probabilities along the edges.

For very long utterances, N will have to be very large to achieve an acceptably high

probability of the true utterance being within N . Ravishankar (1997) uses articulation

points (points of high con�dence in a word hypothesis) to extract N -best segmented lists

from word lattices for very long utterances. N -best hypotheses are extracted for each

segment. Segments meet at articulation points, creating a packed representation of the

N -best lists, similar to a lattice.

6We will consider rescoring to include rescoring by parsing.
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Rayner et al. (1994) combines several knowledge sources, including N -gram scores,

binary features related to grammaticality, and scores based on relationship types between

phrasal headwords (similar to relationships used in our work) as a basis for rescoring.

They separate the contribution of each knowledge source to the improvement in WER;

headword relationships coupled with acoustic scores are found to be as useful as N -

grams, however the di�erences found may not be signi�cant, given the small size of the

test corpus used.

There can be an arbitrary number of rescoring steps, each using a di�erent kind of

information or a di�erent model. In most systems, there are only two stages | the N -

best hypotheses from HMM decoding are rescored by a higher-level language model. The

bene�t of this process over word lattice rescoring is that the language model need not

be strictly left-right (i.e., it does not have to operate on sentence pre�xes). Word lattice

rescoring can operate on pre�xes (partial lattices), i.e., rescoring can begin before the

end of the utterance is processed by the acoustic model. This requires adaptation of the

language model to operate on-line (as edges become available) and left-right. N -best list

rescoring need not operate on-line or left-right, as the N -best list is not generated until

the utterance has been completely processed by the acoustic model. Once the entire word

lattice is available, the N paths are extracted. Therefore, complete (i.e., spanning the

time of the utterance) hypotheses become available to the parsing model in a single step.

Thus high-level parsing models, such as the probabilistic lexicalized parsers of (Charniak,

2001; Collins, 1999) can be directly applied to N -best lists, and the sentence (and parse

tree) with the highest score is selected. Scores generated by this process can also be

interpolated with scores assigned by earlier stages. Xu et al. (2002) shows a reduction

in WER through N -best list rescoring with the structured language model (Chelba and

Jelinek, 2000) interpolated with a trigram model.

Roussel and Halber (1997) applies additional �ltering only to ill-recognized words,

based on con�dence scores assigned by analysing agreement between members of N -best
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lists. This is a novel way to restrict the choice of the parsing model, based on the

assumption that parsing (even lexicalized parsing) can accept an incorrect hypothesis

which happens to be grammatically well-formed, and that more control should lie with

the acoustic model.

Brill et al. (1998) presents an application of N -best list rescoring using humans as

the rescoring system. Participants are presented with N -best lists and asked to choose

the item most likely to be the true utterance. In addition, data are gathered about the

kinds of knowledge used by the human subjects when making decisions. Closed class

word choice is the most e�ective way humans make decisions about plausible hypotheses,

given the N -best lists (covering several genres) in that study. This is not surprising,

given that closed-class words are often short, and provide very little acoustic evidence

for an ASR system. Other pro�ciencies humans use to make decisions for N -best list

rescoring include number agreement, complete sentence vs. incomplete sentence, topic,

world knowledge, and predicate-argument/semantic agreement. The human subjects

were able to achieve 17{59% relative improvement in WER over scoring with combined

trigram and acoustic models. This work is signi�cant in that it shows recognition can

be improved with high-level knowledge | however, we may have to solve the general

arti�cial intelligence problem to get there.
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Chapter 3

Review of the Probabilistic Model

3.1 Syntactic Structure in Natural Language

Syntactic structure in natural language is a continually debated topic in linguistics. How-

ever, there has been some reasonable agreement on a structural representation within the

computational linguistics community | the parse tree. Furthermore, a standard format

of parse tree has been adopted | the Penn Treebank format. Although the Penn Tree-

bank format is widely used, it has several shortcomings. For example, the trees are

rather 
at (e.g., dependence is often not speci�ed in noun-noun compounds). The for-

mat standard derives from the Penn Treebank (Taylor et al., 2003), a corpus consisting

of sentences for which parse trees were manually created, using a set of guidelines. There

are some inconsistencies and errors in the Treebank corpus, including structural inconsis-

tencies and part-of-speech (POS) tagging errors (Ratnaparkhi, 1996). For parsers trained

on the Treebank, these inconsistencies can be problematic. However, statistical systems,

such as the one used in this work, are usually robust. Each kind of Treebank error is

usually a unique occurrence, contributing a low probability to our model.

Statistical parsers use a treebank to train a model, which is then applied to test

sentences, with the goal of automatically producing trees that �t the guidelines. An

33
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example of a Penn Treebank tree is shown in �gure 3.1. Each word in the tree bears a

POS tag, e.g., years is annotated as a plural noun, NNS. Word / POS pairs are combined

using parentheses into groupings, called parse tree constituents. For example, (NP (CD

55) (NNS years)) is a noun phrase containing a cardinal number and a plural noun.

Some non-terminals, such as NP-SBJ-1, are labelled with additional features | in this

case the role assignment SBJ indicating the NP is the subject. Parse trees may also

contain empty constituents, such as (-NONE *-1) in the example. These are traces |

placeholders for the corresponding numbered constituent (NP-SBJ-1 in this case). We

will eliminate features and empty constituents in a pre-processing step, as they are not

considered by the parsing model II of Collins (1999), which we implement for word lattice

parsing.

( (S

(NP-SBJ-1

(NP (NNP Rudolph)(NNP Agnew) )

(, ,)

(UCP

(ADJP

(NP (CD 55)(NNS years) )

(JJ old) )

(CC and)

(NP

(NP (JJ former)(NN chairman) )

(PP (IN of)

(NP (NNP Consolidated)(NNP Gold)(NNP Fields)(NNP PLC) ))))

(, ,) )

(VP (VBD was)

(VP (VBN named)

(S

(NP-SBJ (-NONE- *-1) )

(NP-PRD

(NP (DT a)(JJ nonexecutive)(NN director) )

(PP (IN of)

(NP (DT this)(JJ British)(JJ industrial)(NN group) ))))))

(. .) ))

Figure 3.1: A Penn Treebank Parse Tree.
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The trees of the Penn Treebank are not annotated with headwords. Headwords are

roughly the most important or meaningful word in a constituent. For example, in �gure

3.1, (VBN named) is the headword of the VP constituent which contains it. We annotate

the non-terminal nodes of parse trees used for training with their headwords, following

the deterministic rules of (Collins, 1999, appendix A), which are a modi�ed version of

the rules of (Magerman, 1994).

3.2 Parameterization

The parameterization of a parsing model is the choice of how to break down the tree into

parts, and how to choose conditional probabilities to represent the choice. Three head-

driven probabilistic parsing models are presented in (Collins, 1999), each of which includes

POS tagging as part of the model. Head-driven refers to the signi�cant role of headwords

conditioning the generative process. The three models di�er in the level of syntactic detail

they employ. We choose model II of (Collins, 1999) as the parsing parameterization for

the lattice parser of this work, and attempt a faithful re-implementation of that model,

adapted to word-lattice parsing. Where strict adherence to the model of Collins (1999)

is not possible, either because of di�erences inherent in the task of lattice parsing, or due

to ambiguity in the original model, the di�erences will be noted.

The basic model represents a parse tree as a sequence of decisions based on a head-

centred, top-down derivation of the tree. This model captures dependencies between pairs

of headwords, incorporates POS tagging, lexical dependencies, in
uences of distance be-

tween head words and modi�ers, and di�erences between non-recursive NPs and other

NPs, using a set of parameters trained over a treebank corpus. Outside probabilities

(the prior probability of a given head non-terminal, headword, and headtag) based on

(Caraballo and Charniak, 1998) are also incorporated into the probability model. Model

II extends the basic model to include parameters modelling a complement/adjunct dis-
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tinction and subcategorization frames for headwords. Model III incorporates empty

constituents (traces) and wh-movement | these are not considered in our parser. The

speci�c parameters used in our parser are described in the remainder of this section. Pa-

rameters are estimated by linear interpolation of various levels of back-o�, described fully

in section 3.3. More detail on the motivation leading to the parameter selection, including

examples, can be found in chapter 7 of (Collins, 1999). The remainder of this chapter,

except where noted, is a summary of that work1, as it pertains to our re-implementation

of the model. Readers familiar with Collins (1999) may wish to skim ahead to chapter 4.

3.2.1 The Basic Model

The basic process of the parsing model is to break traditional PCFG rules into a set of

smaller steps | the addition of modi�ers to a head, and to model the probabilities of

those dependency relationships. A typical PCFG rule has the form:

P (h)! Ln(ln) : : : L1(l1)H(h)R1(r1) : : :Rm(rm) (3.1)

where H is the head child of the left-hand-side constituent, and h is the associated

headword and headtag2. P (h) is the parent of the rule, with its headword and headtag.

L and R are the left and right modi�ers of the head, with their associated headwords

and headtags. Left and right modi�er sequences are extended with a STOP symbol.

The probability of the PCFG rule, given the left hand side, can be decomposed exactly,

1Thanks to Michael Collins for permission to repeat the pertinent details of the model and parameter
estimation technique.

2The headword and POS tag of the headword (the headtag), are noted by the single speci�er h, l, or
r in this discussion. They will usually be decomposed to (ht; hw), (lt; lw), and (rt; rw) when considered
in di�erent levels of back-o� context for parameter estimation.
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using the chain rule for probabilities:

P(Ln(ln) : : : L1(l1)H(h)R1(r1) : : : Rm(rm)jP (h)) =

Ph(HjP (h))�

Y

i=1:::n+1

Pl(Li(li)jL1(l1) : : : Li�1(li�1); P (h); H)�

Y

j=1:::m+1

Pr(Rj(rj)jL1(l1) : : : Ln+1(ln+1); R1(r1) : : :Rj�1(rj�1); P (h); H) (3.2)

Thus the top-down generation of parse trees has three phases per rule. First, generate

the head child of the parent, with probability Ph(HjP; h). Second, generate modi�ers to

the left with probability
Q

i=1:::n+1(Pl(Li(li)jP (h); H), where Ln+1(ln+1) = STOP. Finally,

generate modi�ers to the right in an analogous way.

Note that conditioning modi�er generation on all previously modi�ers would be diÆ-

cult, due to the sparsity of annotated training data. Collins (1999) simpli�es the modi�er

probabilities by assuming independence:

Pl(Li(li)jL1(l1) : : : Li�1(li�1); P (h); H) = Pl(Li(li)jP (h); H)

(3.3)

Pr(Rj(rj)jL1(l1) : : : Ln+1(ln+1); R1(r1) : : : Rj�1(rj�1); P (h); H) = Pr(Rj(rj)jP (h); H)

(3.4)

3.2.2 Distance

The basic model assumes independence of all modi�ers. In general, the modi�er gener-

ation can depend on any function of the previous modi�ers, head/parent category, and

headword/headtag, making a history-based parameterization (Black et al., 1992). The

generation process is ordered | depth-�rst and outward from the head modi�er, so when

generating modi�er Li(li), modi�er Li�1(li�1) has already been fully generated. So, we

can also condition on any structure below the previous modi�ers. Collins (1999) extends

the basic model to a history-based model (model I), with the inclusion of a distance
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measure:

Pl(Li(li)jP (h); H; L1(l1) : : : Li�1(li�1)) = Pl(Li(li)jP (h); H; distance(i� 1))

(3.5)

Pr(Ri(ri)jP (h); H;R1(r1) : : :Ri�1(ri�1)) = Pr(Ri(ri)jP (h); H; distance(i� 1))

(3.6)

The distance measure is a vector with two elements: (1) is the string between the head

and modi�er of zero length? (2) does the string between the head and modi�er contain a

verb? These questions allow the model to learn a preference for modi�cation of the most

recent verb. We decompose this vector into two �elds in the parser implementation |

the �rst becomes the distance measure, D, and the second becomes the boolean \contains

a verb" 
ag, V .

3.2.3 Subcategorization

The assumption that modi�ers are generated independently was proved to be a poor

assumption by evaluation of the basic model (Collins, 1999). Although complements

and adjuncts can be distinguished through a set of rules in a post-processing step, it

was shown by Collins (1999) that making the distinction before parsing improved model

performance. Collins (1999) extends model I to include the distinction between com-

plements and adjuncts, using subcategorization frames | multisets3 specifying left and

right complements for each rule head constituent. This extension introduces dependence

between complements, and we adopt it in the model used in this work.

The �rst addition to the basic model is annotation of complements with the \-C"

suÆx, creating new non-terminals. This is accomplished by adding a suÆx to all non-

terminals in the training data that satisfy a set of conditions speci�ed by Collins (1999).

3A set which may contain duplicate elements.
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Second, subcategorization frames, S, are gathered in training for all headwords. A sub-

categorization frame is an unordered multiset of the complement non-terminals modifying

the head. These counts are used to train two new estimators for left and right subcate-

gorization frames: Plc(SjP (h); H) and Prc(SjP (h); H). The conditioning context for Pl

and Pr is expanded to include the subcategorization frame:

Pl(Li(li)jP (h); H; L1(l1) : : : Li�1(li�1)) = Pl(Li(li)jP (h); H; distance(i� 1); S)

(3.7)

Pr(Ri(ri)jP (h); H;R1(r1) : : : Ri�1(ri�1)) = Pr(Ri(ri)jP (h); H; distance(i� 1); S)

(3.8)

As each complement is generated, its non-terminal is removed from the subcategoriza-

tion multiset. When adjuncts are generated, the subcategorization frame is unchanged.

Note that the probability of generating the STOP symbol is 0 when the subcategorization

frame is non-empty. Similarly, the probability of generating a complement is 0 when the

subcategorization frame is empty.

In the implementation of the parser, left and right modi�ers are added in separate

steps. Therefore, our notation is simpler than that of Collins (1999) | a distinction

between left and right subcategorization frames LC and RC is not made, and the sub-

categorization frame S is the left or right frame, depending on the type of edge (see

section 4.4).

3.2.4 Non-Recursive NPs

A non-recursive noun phrase (referred to as a \baseNP", with non-terminal label NPB),

is a NP that does not directly dominate another NP, unless that NP is a possessive NP (i.e.,

it directly dominates the possessive tag, POS) (Collins, 1999). Some example baseNPs

are:

� Pierre Vinken
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� the Tuesday edition

� today's stock prices

Collins (1999) applies a special probabilistic treatment to baseNPs. They merit special

consideration for several reasons. First, the boundaries of baseNPs are often strongly

marked | the start points are often marked by a determiner or adjective. Thus, the

probability of generating the STOP symbol should be greatly increased if the previous

modi�er is a determiner or adjective. The independence of modi�ers does not capture

this information. Second, the internal structure of baseNPs in the Penn Treebank is

underspeci�ed. Multi-noun compounds usually have no internal structure (e.g., NP !

NN NN NN). Therefore, there is no justi�cation to condition on the \head" any more than

on the previous modi�er.

The model is augmented to generate baseNPs di�erently than other non-terminals.

Training data are pre-processed to provide data for baseNP-speci�c parameters | NPB

nodes are inserted into training parse trees where appropriate. All NPB nodes inserted

into training parse trees are directly dominated by an NP. Equations (3.5) and (3.6) are

modi�ed for instances of P = NPB, to include conditioning on the previous modi�er:

Pl(Li(li)jH;P; h; L1(l1) : : : Li�1(li�1)) = PNPBl(Li(li)jLi�1(li�1))

(3.9)

Pr(Ri(ri)jH;P; h; R1(r1) : : :Ri�1(ri�1)) = PNPBr(Ri(ri)jRi�1(ri�1))

(3.10)

As the modi�er and previous modi�er are always adjacent, the distance measure is

omitted. The previous modi�er is initialized to H(h) (i.e., L0(l0) = H(h) = R0(r0)).

3.2.5 Coordination

Coordination constructions normally have the form of X ! X CC X in the Penn Tree-

bank. This is evidence that generation of modi�ers X and modi�er CC are not independent
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| in the vast majority of cases, exactly one modi�er precedes and follows a conjunction.

Collins (1999) thus extends the generative model to give appropriately low probability to

highly unlikely constructions such as NP ! NP CC. The generation of the coordinator is

delayed until the next modi�er is generated by setting a coordination 
ag (c). The 
ag is

generated by the probability estimator Pcc(cjL; P;R; lt; rt; lw; rw). When no coordinator

is generated c = none and Pcc = 1.

Note that although the coordination relationship discussed above is the standard in

the Penn Treebank, sentences which violate the X CC X pattern are common (e.g., \And

he said the stock prices would fall.", \Prices were high, but the mood was anything

but."). Collins (1999) does not specify how to handle such cases | which would not

be parsed by the model as outlined thus far. Such cases of non-standard coordination

occur often-enough in the Penn Treebank to have a signi�cant impact on performance.

We suggest three alternatives to adapt the model:

1. Allow for generation of incomplete coordinations (i.e., allow addition of a

STOP modi�er when c 6= none). Add the probability of generating incom-

plete coordination to the parameters: When a STOP is generated and the

coordination 
ag is not none, add Pcc(cjSTOP; P;R;STOP; rt;STOP; rw) or

Pcc(cjL; P; STOP ; lt; STOP ; lw; STOP ), depending on the direction. This tech-

nique requires little change to the statistical model, but allows generation of in-

complete coordination at any point in the sentence.

2. Treat sentence-initial (and sentence-�nal, should it occur) coordination as a di�er-

ent POS | CCSTART (and CCEND, respectively). Treat these cases as regular mod-

i�ers, not coordination. This suggestion introduces a deterministic tagging which

is based on the position of words in the sentence | a departure from the statis-

tical nature of the parsing model. The advantage is that it restricts non-standard

coordination to sentence-initial or �nal positions.
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3. For all coordinations, generate two edges | one using the coordination 
ag and

another using coordination as a regular modi�er. The model will decide which to

use, based on the scores assigned by the parameters. This technique was suggested

by Michael Collins (p.c.), but may defeat the purpose of generating the coordi-

nation 
ag, as it removes the restriction on coordination by allowing any form of

relationship to compete with the standard speci�ed by the Treebank.

The performance of these three techniques was evaluated with the parser described in

section 4.6 using the development test set. The �rst technique was the most successful

(the others admitted non-standard coordinations anywhere in the sentence) and is used

in experiments reported in chapter 5.

3.2.6 Punctuation

Although punctuation does not occur in speech lattices, in order to test our implemen-

tation of the model in comparison to the implementation of Collins (1999) (using test

sections of the Penn Treebank) we implement the punctuation-handling of the model, as

described in detail in Collins (1999). We consider only punctuations tagged as comma

or colon | others are removed from training data.

First, punctuation in the training data is raised as required to ensure that all punc-

tuation appears between two non-terminals (�gure 3.2). Second, punctuation is treated

in a similar manner to coordination, with generation of a punctuation 
ag (p), a variable

indicating punctuation to be generated with the next modi�er. The 
ag is generated by

the probability estimator Pp(pjL; P;R; lt; rt; lw; rw). If no punctuation is present, the


ag is none and Pp = 1 is omitted. Sentence-initial and sentence-�nal punctuation are

handled in the same way as coordination.
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Vinken

ADJP

61

joined

the board

NPB

NP

oldyearsPierre

,

Vinken

ADJP

61

, joined

the board

NPB

NP

oldyearsPierre

,

S

VP

VP

,

S

NP

NP

NPB

NPB

Figure 3.2: A parse tree before and after punctuation raising. Reprinted, with permission,

from Collins (1999).

3.2.7 Empty (PRO) Subjects

Sentences in the Penn Treebank frequently have an empty (PRO) subject, which may or

may not be controlled. For example, in the sentence \Selling stocks is pro�table", selling

is analyzed as having an empty subject. As sentences with and without empty subjects

are labelled S in the Penn Treebank, the probability for an empty left subcategorization

frame, Plc(fgjS; VP; verb) will be rather high. Sentences with and without subjects appear

in di�erent syntactic environments, i.e., they do not have the same parent distribution.

For these reasons, Collins (1999) introduces a pre-processing modi�cation to training

data, relabelling all sentences with empty subjects as SG. This allows for a clear division of

subcategorization, depending on the type of sentence generated: Plc(fgjS; VP; verb) � 0,

while Plc(fgjSG; VP; verb) = 1.

3.2.8 Inside and Outside Probabilities

The inside probability | the probability derived using the internal structure of a parse

tree | is an insuÆcient measure of the probability of that subtree because it takes

no account of the prior probability of seeing a constituent with a given non-terminal
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label, headword, and headtag (Caraballo and Charniak, 1998; Goodman, 1997). For the

Collins (1999) models, the inside probability for a parse can be considered the product

of the probabilities invoked during tree generation, using the parameters outlined in

the previous sections. For example, for the rule NP(NNP,Vinken) ! NBP(NNP,Vinken)

,(,) ADJP(JJ,old), the inside probability is:

Ph(NPBjNP; NNP; Vinken)�

Plc(fgjNP; NBP; NNP; Vinken)�

Prc(fgjNP; NBP; NNP; Vinken)

Pl(STOPjNP; NPB; NNP; Vinken)�

Pr(ADJP(JJ; old); c = none; p =;jNP; NPB; NNP; Vinken)�

Pr(STOPjNP; NPB; NNP; Vinken)�

Pp(;jNBP; NP; ADJP; NNP; Vinken; JJ; old) (3.11)

The lack of considering of the prior probability of P; h can result in constituents receiv-

ing a high inside probability, given some unlikely P; h. For example, if some VP headed

by a preposition of is generated, the subsequent subtree may have a high conditional

probability Pinside(subtreejVP; IN; of).

The score for a parse can be improved by combining this with an additional outside

(or prior) probability, yielding a combined score (\�gure of merit" in Caraballo and

Charniak (1998)):

Score = Pinside(subtreejP; h)� Poutside(P; h) (3.12)

Caraballo and Charniak (1998) describe a complicated method of determining the

prior probability, but the simpler method of Goodman (1997) is adapted by Collins

(1999) for the parsing model we use:

Poutside(P; h) = Poutside1(ht; hw)� Poutside2(P jht; hw) (3.13)
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Recall that h is the headword, headtag pair. The counts are gathered over all training

events (unary and binary dependencies).

At each step in the iterative parsing process, we have a partial parse tree with an inside

and outside probability. We extend the tree, adding the probability of the additional

internal tree structure to the inside probability, then recalculating the outside probability

to get the score for the new tree.

3.3 Parameter Estimation

In order to obtain the best estimates of probabilities in the face of sparse annotated train-

ing data, a back-o� strategy is used by Collins (1999), which we adopt and summarize

here.

Maximum likelihood estimates are calculated given a conditioning context. The con-

ditioning context is a set of values for various context features, such as distance (D),

parent (P ), previous modi�er, etc. The conditioning context is expressed as X, a vector

of X1; X2; : : : ; Xn. X is a member of the set of possible contexts X = X1;X2; : : : ;Xn.

The maximum likelihood estimate for some set of outcomes Y is:

P̂ML(Y jX) =
Count(Y;X)

Count(X)
(3.14)

A back-o� strategy is a way to smooth probability estimates and ensure they are based

on a reasonable number of samples. In a high dimensional parameter space (large n),

Count(X) may be very low or 0, leaving 3.14 unde�ned or inaccurate. To compensate,

Collins (1999) introduces a linear interpolation over maximum likelihood estimates using

subsets �i(X) of X, where �i(X) is the ith back-o� context level.

The parameters of the model are summarized in table 3.1, along with the context

considered at each level of back-o� (see section 3.3.2). The general three-level back-o�

strategy is:

Level 1: full context, including parent categories, modi�er tags, and modi�er words
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Probability Context Variables

(Levels of Back-o�)

P; ht; hw

Ph(Hj : : :) P; ht

P

Plc(Sj : : :) P;H; ht; hw

P;H; ht

P;H

Pl1(Li(lti); c; pj : : :) S;D; P;H; ht; hw

S;D; P;H; ht

S;D; P;H

Pl2(lwij : : :) lti; Li; c; p; S;D; P;H; ht; hw

lti; Li; c; p; S;D; P;H; ht

lti

Pls(STOPj : : :) D;P;H; ht; hw

D; P;H; ht

D; P;H

PNPBl1(Li(lti); c; pj : : :) Li�1; lti�1; lwi�1

Li�1; lti�1

Li�1

PNPBl2(lwij : : :) lti; Li; c; p; Li�1; lti�1; lwi�1

lti; Li; c; p; Li�1; lti�1

lti

PNPBls(STOPj : : :) Li�1; lti�1; lwi�1

Li�1; lti�1

Li�1

Pp(pj : : :) L; P;R; lt; rt; lw; rw

Pcc(cj : : :) L; P;R; lt; rt

L; P; R

Poutside1(ht; hw)

Poutside2(P j : : :) ht; hw

ht

Table 3.1: The model parameters and conditioning variables for each level of back-o�.
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Level 2: eliminate modi�er words from the level 1 context

Level 3: eliminate modi�er tags from the level 2 context

Notable exceptions are the second modi�er parameters Pl2, Pr2, and their NPB equiv-

alents, described in the next section. These parameters contribute the POS tagging

probability to the model, thus the �nal level of back-o� context contains the POS tag

instead of the parent non-terminal.

3.3.1 Modi�er Parameters

Note that the left and right modi�er probabilities, Pl, Pr, PNPBl, and PNPBr are divided

into 2 parts, which are smoothed separately. For example:

Pl(Li(lti; lwi); c; pjS;D; P;H; ht; hw) =

Pl1(Li(lti); c; pjS;D; P;H; ht; hw)�

Pl2(lwijlti;Li; c; p; S;D; P;H; ht; hw) (3.15)

3.3.2 Smoothing and Back-o�

The probability estimate is calculated by a linear combination of maximum likelihood

(ML) estimates at each level of back-o�. The interpolation method was chosen by Collins

(1999) for its ability to balance the e�ects of two competing types of error | bias and

variance. Brie
y, the variance (sampling error) is higher for estimates based on a low

number of samples. The bias is roughly the di�erence between a parameter estimate

using a restricted context and the \true" maximum likelihood estimate considering the

full context. The bias is therefore 0 for P̂ML(Y jX). However, the variance is possibly

high for this ML estimate, as the number of samples matching the full context X may

be small. One can reduce the variance by increasing the number of samples contributing

to the ML estimate. This is accomplished by decreasing the size of the conditioning

context through di�erent back-o� levels �i(X). This, in turn, results in increased bias |
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the trade-o� between the two types of error. The linear interpolation method of Collins

(1999) (an adaptation of Jelinek (1990)) was found to minimize both types of errors. For

some P(Y jX), and a back-o� context �i(X) � X, Collins (1999) calculates the ith level

estimate:

P̂i(Y jX) = P̂ML(Y j�i(X)) =
Count(Y;�i(X))

Count(�i(X))
(3.16)

where Count is a function which counts the number of occurrences of its argument, in

the training data. There are two constraints on how the context subset function �i can

be chosen:

1. �1(X) must be suÆciently small (general) such that P̂1(Y jX) is de�ned for all

contexts X 2 X (i.e., 8X 2 X ; Count(�1(X)) > 0)

2. if i < j;�i(X) � �j(X) (i.e., greater index, more speci�c context)

The levels of back-o� are combined through linear interpolation, using a weight �i for

each level. The ith level smoothed estimate ~Pi is de�ned recursively:

~P1 = P̂1

~Pi = �iP̂i + (1� �i) ~Pi�1; 1 < i � n (3.17)

Each �i must take a value from 0 to 1 for each ~Pi to de�ne a distribution over

the outcome-space Y. The value of �i is calculated based on the number of samples

contributing to the parameter estimate (fi = Count(�i(X))) and the number of unique

outcomes (values of Y which occur once), ui, in the distribution �i(X)) at the ith level

of context. Intuitively, additional weight should be given to probabilities based on many

samples. However, if for some sample set, most outcome occurrences are unique (i.e.,

the number of unique samples (ui) is similar to the number of total samples (fi)), the

estimate will have greater variance. In this case, �(i) should be lower. The form for �i
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used in this work satis�es these conditions4:

�i = 0 If Count(�i(X)) = 0

�i =
fi

fi + 5ui
If Count(�i(X)) > 0 (3.18)

Given three levels of back-o�, as we have for most of the parameters in table 3.1, the

recursion for estimation can be expanded:

e = �1e1 + (1� �1)(�2e2 + (1� �2)e3) (3.19)

We can see that if there are a large number of (non-unique) samples contributing

to the probability estimate at the full (most speci�c) level of context, e1, the value of

�1 � 1, and the other levels of back-o� contribute little to the �nal estimate. On the

other hand, if there are relatively few samples contributing to e1, or if there are a high

fraction of unique outcomes for the context �i(X), �1 � 0, and the other back-o� levels

contribute more. The back-o� levels of context in table 3.1 conform with the constraints

on the context subset function outlined above.

4The constant 5 was optimized by Collins (1999) on a development test set.
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Chapter 4

Head-Driven Parsing for Speech

Recognition

As we have discussed in section 2.6.1, parsing models based on headword dependency

relationships have been reported, such as the structured language model of Chelba and

Jelinek (2000). These models use much less conditioning information than the parsing

models of Collins (1999), and do not provide Penn Treebank format parse trees as output.

In this chapter we explain adaptation of the probability model outlined in chapter 3 for

left-to-right operation as a language model. The lattice parsing algorithm, based on

framework source code supplied by Bob Carpenter, is also presented. The intended

action of the parser is illustrated in �gure 4.1, which shows parse trees built directly

upon a word lattice.

4.1 Parsing as a Predictive Language Model

The models of Collins (1999) are not only parsing models, but also assign probabilities to

strings in the language. The model employed in this work assigns a probability P (W;T )

to a word sequence W and parse tree T such that
P

8W;8T P (W;T ) = 1. In the implemen-

tation of (Collins, 1999), the model is applied in chart parsing for complete strings. We

51
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unit
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NN NNP INAUX DT MD VBNNIN
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S

Figure 4.1: Example of a partially-parsed word lattice. Di�erent paths through the lattice

are simultaneously parsed. The example shows two �nal parses, one of low probability

(S�) and one of high probability (S).
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adapt the model to left-to-right parsing, which completely parses each pre�x of a string

or path through a lattice. We approximate the search for the best next word wk, given

some word and parse pre�xWk�1; Tk�1 by searching for the best word and parse extension

Wk; Tk using the parameters of the model. We do this for all parse pre�xes Wk�1; Tk�1 in

the chart (i.e., those not eliminated by dynamic programming constraints, described in

section 4.7). The model does not have an explicit formulation of the standard language

modelling probability P (wkjWk�1).

4.2 Penn Treebank { Binary Mapping

As shown in �gure 4.2, Penn Treebank format trees are not strictly binary branching.

Although we can gather counts for our parameter estimators directly from Penn Treebank

format trees with any branching, the parsing algorithm we use creates trees with only

unary or binary branching at each node. This allows us to iteratively add one modi�er at

at time, and restricts the grammar size to unary and binary rules. The result is the same

as if we had not forced unary/binary structure | the trees produced by our algorithm

can be mapped to a Penn Treebank format tree, with any branching pattern. Note that

nodes in a parse tree as shown in �gure 4.2 correspond to edges in the chart parser.

Brie
y, parse trees are produced by the parsing model using unary extension opera-

tions, which serve to change the parsing \mode", and binary join operations, which add

modi�ers. The order in which modi�ers are added to a headword is �xed | �rst left

modi�ers then right modi�ers. Unary extend operations are used to signal the end of

addition of left modi�ers and the beginning of addition of right modi�ers. For example,

in �gure 4.2, we can see modi�ers to the left are added to the LEFT NPB(NPB,apples)

edge, followed by unary extension to RIGHT NPB, to which only modi�ers to the right

can be added. When addition of modi�ers is complete, unary extension to a STOP edge

takes place. To convert trees created this way to the Penn Treebank format, intermediate
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(non STOP) nodes are omitted, and the STOP nodes (marked by boxes in �gure 4.2) are

connected. This process is explained in greater detail in the remainder of this section.

The basic element of chart parsing is the edge. An edge consists of:

� a type (e.g., STOP)

� a non-terminal label (e.g., NP)

� a category (a set of properties used to calculated the parsing score)

� an associated probabilities (e.g., acoustic model score, parsing score)

� links to its child edges

An edge may have one, two, or no children, depending on its type. The types and

categories of edges will be outlined in detail in section 4.4. The parsing operations are

controlled by the edge type. The probabilities assigned to edges are a function of the

contents of the category and non-terminal label. The lattice parser operates with a simple

deterministic grammar, based on three groupings of edge types | EXTEND, FINAL, and

WORD. The parser grammar de�nes an internal representation of parse trees with, at most,

two children per edge:

1. FINAL ! EXTEND[RIGHT] j WORD

2. EXTEND[RIGHT] ! EXTEND[LEFT]

3. EXTEND[LEFT] ! FINAL

4. EXTEND[RIGHT] ! EXTEND[RIGHT] FINAL

5. EXTEND[LEFT] ! FINAL EXTEND[LEFT]

Productions of grammar rules 1-3 are referred to as unary extend operations. Productions

of grammar rules 4-5 are called binary join operations. Each edge is composed of a series

of related data �elds, including the grammatical label corresponding to the non-terminal

label in the Penn Treebank format tree. We refer to the Penn Treebank non-terminal as

the non-terminal (e.g., NP, VP), whereas we refer to the non-terminals of the simple parser
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STOP(S,bought)

STOP(VP,bought)

STOP(NPB,John)

boughtJohn

NNP(John)

NPB(John)

NP(John)

VBD(bought)

VP(bought)

S(bought)

the

DT(the)

RIGHT(S,bought)

LEFT(S,bought)

LEFT(S,bought)

RIGHT(VP,bought)

RIGHT(NP,apples)

LEFT(NP,apples)

apples

NNS(apples)

NPB(apples)

NP(apples)

red

JJ(red)

RIGHT_NPB(NPB,John)

LEFT_NPB(NPB,John) LEFT(VP,bought)

RIGHT(VP,bought)

STOP(NNP,John) STOP(VBD,bought) STOP(DT,the)

WORD(John) WORD(bought) WORD(the)

LEFT_NPB(NPB,apples)

STOP(NNS,apples)

WORD(apples)

STOP(JJ,red)

RIGHT_NPB(NPB,apples)

LEFT_NPB(NPB,apples)

STOP(NPB,apples)

STOP(NP,apples)

Equivalent Lattice−Parser Tree

Penn Treebank Tree

WORD(red)

LEFT_NPB(NPB,apples)

Figure 4.2: Example equivalence of Penn Treebank and parser tree formats. Labels of

edge types in the FINAL group are enclosed in boxes. These are the edges collected on

output to make a Penn Treebank format tree. The headwords are shown in parentheses

for both formats. For the parser format, the edges are labelled by their edge type, and

grammar non-terminal labels are shown in parentheses with the headword.
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grammar given above as the edge groups, (e.g., FINAL). The edge types are the di�erent

kinds of edges which form the edge groups (e.g., STOP is an edge type member of the

FINAL edge group). Thus LEFT[VBD]!STOP[NP]LEFT[VBD] is an instantiation of rule 5

with non-terminals and edge types given in place of edge groups. It is important not to

confuse the parser grammar for edge operations with the \grammar" implicitly de�ned

by the probabilities in the parameterization of the language model. The language model

de�nes its grammar by allowing for any non-terminal, headword construction which has

a non-zero probability given the parameters.

Trees created by the lattice parser contain three groupings of edge types, described

in more detail in following sections. Brie
y, the groups are:

� FINAL (edges labelled STOP, COORD, and PUNCT): equivalent to nodes in a Penn

Treebank format parse tree; have exactly one child

� EXTEND (edges labelled LEFT, RIGHT, LEFT NPB, and RIGHT NPB): intermediate nodes

inserted to create a parse tree with maximum two children per edge; further divided

into two subgroups, identi�ed with LEFT and RIGHT features in the parser grammar

� WORD (edges labelled WORD): the lexical edges which form the leaves of the tree; can

be seen as a special type of FINAL edge, which cannot be extended

By creating edge groups, parse trees formed by our parser assume a structure with max-

imum two children per edge. This allows us to assign the calculation of the parameters

of chapter 3 to individual parse operations, depending on the edge types involved (see

section A.2).

Edges from the EXTEND group do not correspond to nodes in a Penn Treebank format

parse tree. To convert a parse tree in the format of our parser to the Penn Treebank

format, we search the tree from our parser depth-�rst, linking FINAL and WORD edges,

bypassing intervening EXTEND edges. That is, for some FINAL edge e, all FINAL and

WORD edges below it (either directly connected or through a sequence of EXTEND edges)
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are collected and become direct descendants of e in the Penn Treebank format. Tree

equivalence is shown by the example in �gure 4.2. For the join operations (EXTEND[LEFT]

! FINAL EXTEND[LEFT] j EXTEND[RIGHT] ! EXTEND[RIGHT] FINAL), the headword of

the child EXTEND edge is percolated up to the new EXTEND edge. For unary extension

operations, the headword of the child is percolated up. Headwords of WORD edges are

simply the word they dominate.

Note that we include the NPB (base-NP) edges in both forms of tree, to show their use

in internal representations of trees | the calculation of edge scores depends on use of

NPB speci�c parameters. We insert NPB edges in the Penn Treebank format trees used in

training, but they are not part of the standard Penn Treebank format. Therefore, these

intermediate edges are eliminated in �nal trees for evaluation against the original Penn

Treebank trees.

4.3 Part-of-speech Tagging

The parsing model used in this work, described in chapter 3, has the selection of POS tags

for words built in, thus does not require a separate POS tagger. Recall that a POS tagger

assigns some part-of-speech to an instance of a word, e.g., NNS for plural nouns. The Penn

Treebank uses a 45-tag set. We do not consider punctuation except comma and semicolon,

so our tag set consists of 40 parts of speech. In order to operate as a POS tagger, our

parser must consider all POS possibilities for each word. That corresponds to up to 40

edge considerations for each word. POS conditioning in our model is implicitly included

in the conditioning context for the various parameters, for example, the probability of

adding a complement modi�er to the left (Pl(Li(lwi; lti); c; pjS;D; P;H;T ;W )) includes

the probability of the modi�er word and tag pair. So, pruning of unlikely word-tag pairs

will occur during higher modi�er-join operations, rather than at the word level. This

leads to a geometric growth in the size of the chart, and increases the rate of chart
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growth.

As we face shortages of time and memory resources running the lattice parser, we

employ a pre-processing step to reduce the POS search space for each word edge con-

sidered by the parser. This module is referred to as the TAGGER. The tagging model

was developed by Carpenter (2000), and is similar to a trigram tagger. Given the tag

sequence (tag1; tag2; tag3), where tag3 is proposed for some word w:

P (w; tag3jtag2; tag1) � P (tag3jtag2; tag1) � P (wjtag3) (4.1)

Note we estimate parameters using back-o� and smoothing as described in section 3.31.

All paths through the lattice are considered | i.e., all possible tag3 for all previous tag

pairs (tag2; tag1) on all paths entering a given WORD edge. Tag sequences are initialized

with two START symbols, so the probabilities for initial words are well-de�ned. A search

is carried out over the space of possible tags for each word to �nd the best tagging:

Pbest(w; tag3jtag2; tag1) = max
tag32T ;(tag2;tag1)2tagSet(w�1 ;w�2)

P (w; tag3jtag2; tag1) (4.2)

In order to provide 
exibility for the more sophisticated tagging built into the Collins

(1999) parsing model II, we retain more than just the 1-best tag sequence found by our

tagger. For some beam �, word w and best tagging Pbest(w; tag3jtag2; tag1), all those

POS with P (w; tag3jtag2; tag1) � Pbest(w; tag3jtag2; tag1)=� are accepted and passed to

the parser.

In preliminary experiments, tagging probabilities were passed to the parser module

and added to the total edge score assigned by the parameters of the parsing model. This

resulted in diÆculties converging to a complete spanning parse. This was because the

tagging probabilities varied widely in their values. Adding them to the score overwhelmed

the selectivity of the parser scores. Rather than apply a scaling factor, we decided not

to pass the tagging scores to the parser, because tag selection is already built into the

parsing model. The tagger is used only to �lter potential POS.

1As in earlier sections, semicolon separates levels of back-o�.
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4.4 Edge data type

There are eight edge types which form the three edge groups:

� FINAL group

{ STOP edges represent complete categories | all possible modi�ers have been

joined under the non-terminal.

{ COORD edges are a special case of STOP edges, headed by coordinating words

(i.e., and).

{ PUNCT edges are a special case of STOP edges, headed by punctuation (i.e., ;).

� EXTEND group

{ LEFT edges represent categories to which modi�er edges (STOP, COORD, PUNCT)

to the left may be added. (EXTEND[LEFT] group)

{ LEFT NPB edges are the NPB equivalent of LEFT edges (EXTEND[LEFT] group)

{ RIGHT edges represent categories to which modi�er edges (STOP, COORD, PUNCT)

to the right can be added. (EXTEND[RIGHT] group)

{ RIGHT NPB edges are the NPB equivalent of RIGHT edges. (EXTEND[RIGHT]

group)

� WORD group

{ WORD edges are parse tree leaves containing the string yield of the tree. (WORD

group)

In addition to its type, an edge is speci�ed by several �elds:

left node number (l): left end of left child

right node number (r): right end of right child

acoustic score (a): assigned by the acoustic processor, and included in the input lattice
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lattice language model score (lm): assigned by stage one (usually trigram) language

model, and included in the input lattice

inside score (s): edge score assigned by the parameters of the parsing model; the inside

probability, e.g., Pls � Prc

weight (w): the weighted log sum of the log acoustic, lattice language model, and inside

scores of all edges in the best partial parse (subtree) rooted at this edge, i.e.,

w = �(log a) + �(log lm) + log s

total score (t): the weight plus the log outside probability for this edge, i.e., t = w +

logPPr

children (c1, c2): one child (c1) for FINAL edges, one or two children for EXTEND edges,

and no children (c1 = c2 = null) for WORD edges

category (cat): the properties of the edge as related to the Collins (1999) parsing model,

such as headword, parent non-terminal, coordination 
ag, etc.

The edge category contains the information used to calculate edge parser scores using

the parameters of the parsing model outlined in section 3.2. The various �elds of the

category are outlined in table 4.1.

4.5 Input Ordering

The parsing algorithm operates purely bottom-up | a phrase structure category is only

considered if all children have been created. The algorithm also operates strictly left-to-

right, evaluating lexical hypotheses online. This requires incoming edges from the word

graph (lattice or string) to arrive in topological order. Thus we topologically sort the

nodes in the input lattices. The topological ordering is a total ordering on the nodes

that places the left node of an edge before the right node of an edge. This ordering of

the nodes also results in edges being ordered such that an edge ending at r = i will be
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Category Property Symbol De�nition

edge type type e.g., STOP

non-terminal label P also called the rule parent, e.g., VP

head child category H the parent of the head child, e.g., VP

headword W the headword of the head child, e.g., bought

headtag T the POS tag of the headword, e.g.,VBD

coordination 
ag c the coordination word, e.g., and ; set to none when not

used

punctuation 
ag p the punctuation word (pw), e.g., (;); set to none when

not used

distance D distance (as de�ned in section 3.2.2), from headword

to the modi�er being added, e.g., between \bought"

and \week"

contains verb 
ag V boolean indicator of whether this edge dominates a

verb

# unary extensions u restricted to two consecutive extensions. A single

unary extension is de�ned as a full (STOP ! RIGHT

! LEFT ! STOP) sequence, i.e., a unary extension in

the Penn Treebank format tree

subcategorization S the listing of expected modi�ers to the left for LEFT

edges, and to the right for RIGHT edges

previous head H�1 the head child category of the previously added mod-

i�era, used for NPB edges

previous word W�1 the word associated with the head child category of

the previously added modi�er, used for NPB edges

previous tag T�1 the POS tag of the previous word, used for NPB edges.

aThe previously added modi�er is towards the head, not lexically previous. Therefore, it is the
modi�er to the right when extending LEFT NPB, or to the left for RIGHT NPB. For example, for the NPB

(NPB((DT the)(NN company)(NN policy)), if (NN policy) is the head, then (NN company) is the
previously added modi�er H

�1 when adding (DT the) with an LEFT NPB edge.

Table 4.1: The �elds of an edge category. Examples are for an edge con-

necting the left-modi�er NP(week,NN) to the head VP(bought,VBD) using the rule

LEFT[VP(bought,VBD)] ! STOP[NP(week,NN)] LEFT[VP(bought,VBD)]
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processed before edge ending at r = j if i < j.

Bottom-up parsing also requires that for any edge of span (l; r), all edges of span

(l + i; r � j) (i.e., any smaller edge within the span) have been processed. In a word

lattice, word edges may have di�erent lengths and overlap. Consider an edge for the word

(realignment) with the same end points as an edge pair (really,meant). The time span

for the edge (meant) is a subset of the span of (realignment). However, the edge (meant)

is not dominated by (realignment), as they appear in di�erent lattice paths. Therefore,

the bottom up parsing restriction does not apply and the edges may be considered in

any order.

4.6 Bottom-up Parsing

The algorithm described in this section | online, bottom-up, left-to-right lattice chart

parsing | is based on preliminary work described in Carpenter (2000) and an incomplete

code framework supplied by Bob Carpenter. The algorithm is a variation of probabilistic

bottom-up Cocke-Kasami-Younger parsing similar to Chappelier and Rajman (1998).

Our parser produces trees (bottom-up) in a right-branching manner: starting with

a proposed headword, left modi�ers are added �rst using right-branching, then right

modi�ers using left-branching. For some grammar rule Z ! Y1 : : : Yh : : : Yn, where Yh is

the head child, we get ordered intermediate steps, resulting in the tree shown in �gure

4.3.

The basic algorithm for our system, including the TAGGER and PARSER modules, is

summarized in �gure 4.4.

4.6.1 Parser Initialization

Word lattices are input from standard lattice format (SLF) �les or a single-path lattice

can be formed from an input string. The lattice can be initially pruned to N -best paths
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1Y

E[R](Z)

E[L](Z)

E[R](Z)

Y n. . .. . . Y h

E[L](Z)

F(Z)

Figure 4.3: Edge join operations: sequence of steps to attach modi�ers to head for

grammar rule Z ! Y1 : : : Yh : : : Yn. Nodes marked E[L] are EXTEND[LEFT] and E[R] are

EXTEND[RIGHT]. Node F(Z) is a FINAL node, headed by non-terminal Z.

using the acoustic and language model (i.e., trigram) scores stored in the �le. After pre-

processing, the lattice is topologically sorted, and edges are arranged in a data stream.

4.6.2 Agenda and Chart Initialization

The AGENDA is a collection of edges which have not been processed (i.e., have not been

fully extended and joined using closure). It is initialized as an empty collection of edges.

The AGENDA is implemented as a priority queue which is constantly ordered (smallest-

�rst) by edge span. Other implementations (such as a �rst-in, �rst-out (FIFO) queue

and a priority queue ordered by score) were also used in testing (see chapter 5).

The CHART is a collection of edges which have been processed and form partial parse

trees. It is initialized as an empty collection of edges and grows as WORD edges are parsed.

The edges in the CHART are partitioned into nodes by their right endpoint. CHART nodes

are further sorted by score (best �rst), for ease of comparison and pruning (see section

4.7).
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// INITIALIZATION

input word lattice, prune to N-best

topologically sort edges, form into input stream

// ITERATIVE PARSE

// until iteration limit is reached or a complete parse is found,

// iteratively grow beam (reduce amount of pruning) and repeat parse

while ((parses.size == 0) && (baseBeam < beamLimit)) {

clear chart;

parses = tagAndParse(input stream);

if (parses.size == 0)

baseBeam = baseBeam + beamIncrement;

}

// TAG AND PARSE FUNCTION

edge[] tagAndParse(input stream, baseBeam) {

while input stream has more edges {

// TAGGER

tags = tag(next WORD edge);

// PARSER

for each (tag in tags) {

// new edge created using rules of table B.1

if (isCoord(tag))

newEdge = COORD(child=WORD,T=tag);

else if (isPunct(tag))

newEdge = PUNCT(child=WORD,T=tag);

else

newEdge = STOP(child=WORD,T=tag);

initialize agenda with newEdge;

}

// binary join and unary extend using rules of appendix A

// until agenda is empty

chart closure(baseBeam);

}

return chart.parses();

}

Figure 4.4: Overview of lattice chart-parsing algorithm.



4.6. Bottom-up Parsing 65

The AGENDA is empty before (and after) processing a WORD edge. The TAGGER receives

an edge, and, using the model described in section 4.3, compiles a list of potential tags

with probability within a beam of the best tagging. The tag list and WORD edge are used

to initialize the AGENDA with new FINAL edges, as shown in �gure 4.4. The properties

of each type of extension of a WORD edge are outlined in table A.1.

4.6.3 Chart Closure

The closure operation is called after the agenda is initialized with a set of FINAL edges

created from a WORD edge. Closure is carried out iteratively, for each edge popped from

the AGENDA, until the AGENDA is empty.

There are two basic operations | unary extension and binary join | corresponding

to the simple parser grammar rules described in section 4.2. For each operation, the

appropriate log probabilities (the parameters of Collins (1999) Model II, as speci�ed in

section A.2) are added to the parser scores of the children, giving the parser score for the

new edge.

A unary extension creates a new edge with the original edge as its child. The new

edge has the same span as its child. For a binary join operation, two adjacent edges,

edge1 and edge2 are combined under a new edge parent. Depending on the type of join

(left or right), the headword of either edge1 or edge2 is passed to parent. Adjacency is

de�ned by the WORD edges forming the leaves of edges in the chart.

Modi�ers are added using the binary join operation. The direction of adjunction

is governed by the edge group (EXTEND[LEFT] or EXTEND[RIGHT]). Unary extensions

change the processing mode. For example, an EXTEND[LEFT] edge can join with FINAL

edges in binary adjunction, adding modi�ers to the left. By unary extension using

the rule EXTEND[RIGHT] ! EXTEND[LEFT], addition of left modi�ers stops2. Now the

2That is, the new EXTEND[RIGHT] edge does not join with left modi�ers. The original EXTEND[LEFT]
edge remains active on the chart.
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EXTEND[RIGHT] edge can join with FINAL edges in binary adjunction, adding modi�ers

to the right. Unary extension using the rule FINAL ! RIGHT stops addition of modi�ers

under the current non-terminal label and completes an join/extend cycle3.

The speci�c unary extension and binary join operations of the parser, as de�ned at

edge group level by the grammar of section 4.2, are speci�ed at edge type level, along

with associated parameters, in the tables of section A.2.

Edges are sequentially popped o� the AGENDA and unary extension and binary join

operations are carried out to completion. Completion means the edge is extended as

much as allowed by the unary rules, and joined to all adjacent edges in the chart, as

allowed by the binary parser grammar rules. All newly created edges are added to the

CHART and AGENDA. This continues until the AGENDA is empty. Binary join operations can

only continue as long as there are adjacent edge pairs which have not been processed.

The number of adjacent pairs is restricted by the length of the string or lattice path read

so far. Unary extension is restricted to, at most, K consecutive extensions, so the closure

operation is guaranteed to stop (K = 3 for experiments of chapter 5). Once the AGENDA is

empty, it is initialized again using the next WORD edge from the sorted word edge stream.

The detailed algorithms for chart closure, unary extension, and binary adjunction are

outlined in appendix A.1.

Note that, similar to the standard CKY parsing algorithm, only one edge for each

unique edge signature is kept in the chart. Edge equality, for the purpose of dynamic

programming, is de�ned by equality of a subset of edge properties (the edge signature),

such that for any edge e with total score te, if there exists some edge f with total score

tf > te and edges e and f are equal in terms of their edge signatures, then only f is kept.

It is not possible that edge e can be part of some parse with overall better score than the

best parse containing f . In terms of the higher parse tree structure built upon e or f ,

3Extension is bottom up, although grammar rules are written in conventional top-down format. For
grammar rule STOP ! RIGHT we create a STOP edge as parent to the RIGHT edge.
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they are completely interchangeable. Edge properties de�ning a unique edge signature

are (l; r; cat), where cat contains (type; P;H; T;W; c; p;D; V; u; S;H�1; T�1;W�1).

Bottom-up parsing requires that when processing any edge of span (l; r), all edges

of span (l + i; r � j) for any (i; j) have already been processed. That is, any smaller

edge within the larger span has already been added to the chart and fully extended by

chart closure. This usually is achieved by considering edges of sequentially greater span.

Our online (left-to-right) parser performs complete chart closure after each word edge is

received. The closure operation is similar to the standard chart closure which is usually

performed over a chart initialized with all word edges simultaneously. To ensure that

the bottom-up restriction is met, chart closure is carried out working backwards from

r, increasing the span considered iteratively from the WORD edge span (l; r) to full path

length (1; r).

4.6.4 Parse Completion

After all WORD edges have been processed from the word lattice, the CHART is queried for

all spanning edges | edges with left endpoint at the start node of the lattice, and right

endpoint at the end of the lattice. These are further �ltered to only those complete parse

edges, which are STOP edges with parent P equal to TOP, the unique \complete parse"

non-terminal which we add to all Penn Treebank training trees. Note that (S) cannot

be used, as not all Penn Treebank trees are full sentences.

If there are no complete parse edges, then the beam is increased (see section 4.7) and

the parse is attempted again. Any parses that are found are converted to Penn Treebank

format and output.
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4.7 Heuristic Search and Pruning

The parsing model we employ �nds the most probable parse given a word lattice. It is

important to note that the sentence yielded by the most probable parse is not necessarily

the most-probable sentence (Chappelier et al., 1999). For example, assume that parse

tree with the highest probability, pbest, yields some sentence s. If pbest is the only parse of

s, then we can say the probability of s is that of pbest. There may be some other sentence

x, for which several (lower probability) parse trees exist. It is possible that sum of the

probabilities of all the parse trees of x will be greater than the probability of pbest. Thus

x is a more probable sentence than s. Conducting this sort of summation is not practical

given a dynamic programming search. In fact, �nding the most-probable sentence is an

NP-hard problem (Sima'an, 1996).

The parsing model (Collins, 1999) used in this work generates all possible parse trees,

using relationships observed in the training data. Therefore, our model could be used

to approximate the search for the most probable sentence, by calculating probabilities

for each word as the sum of probabilities contributed by all parses they participate in.

However, this would change our task to a two-stage task | a search for the best sentence

using our model as a pure language model, followed by a search for the best parse of that

sentence. Such a process may not work well with the de�cient probabilities we use | we

do not account for the entire probability mass, as we use heuristics to restrict the search

space.

Generating all potential parse trees results in a chart which quickly becomes unman-

ageable in size. The worst case asymptotic time and space complexity of the models is

O(n5T 2N3D2LR) (Collins, 1999), where:

� n = length of input (length of path in lattice)

� T = maximum number of di�erent tags seen for any word in vocabulary

� N = the number of possible labels for an edge (the number of non-terminals in the

grammar)
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� D = the number of values possible for the distance

� L = the number of left subcategorizations seen in training data

� R = the number of right subcategorizations seen in training data

If we trace the generation of edges, we can see this complexity at work. For example,

given a STOP edge headed with H, a LEFT edge is created for all parents P and all left

subcategorizations S observed for H in the training data. Extension of all these LEFT

edges to RIGHT edges creates a new edge for all observed right subcategorizations. Binary

adjunction takes place between all adjacent edges. The chart size continues to grow in

this way. Fortunately, the vast majority of the edges we create have probability much

lower than the best edges for their span, and therefore have low likelihood of appearing in

the best parse. There are several techniques to reduce chart growth with varying impact

on the quality of results.

4.7.1 Beam Search

The main technique we employ is a variation of the beam search of Collins (1999) to

restrict the chart size by excluding low probability edges. The drawback to this process

is that we can no longer guarantee that a model-optimal solution will be found. In

practice, these heuristics have a negative e�ect on parse accuracy, but the amount of

pruning can be tuned to balance relative time and space savings against precision and

recall degradation (Collins, 1999).

One can think of the beam search as searching a darkened space with a 
ashlight,

following clues. One can only see the area around the 
ashlight beam, but if one follows

the clues, one can still reach a goal. The chance of seeing clues depends proportionally

on the diameter of the 
ashlight beam. The cost of the search also grows proportionally

as we illuminate more space to consider. We can consider the space of all possible parse

trees, given the parameter set and the sentence or lattice to parse, as the search space.

The basic idea of beam search is to only consider those candidate edges (the \clues"
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in our analogy) which have total scores (acoustic, lattice language model, inside, and

outside probabilities combined) within some factor of the best candidate we have seen

for any span:

edge:t � bestTotal(edge:l; edge:r)=beam (4.3)

Collins (1999) uses a �xed size beam (10000). We experiment with several variable beam

sizes, where the beam is some function of a base beam and the edge width. The width

is the number of terminals (WORD edges) dominated by an edge. The base beam starts

at a low beam size and increases iteratively by a speci�ed beamIncrement if no parse

is found, as shown in �gure 4.4. This allows parsing to operate quickly (with a minimal

number of edges added to the chart). However, if many iterations are required to obtain

a parse, the utility of starting with a low beam and iterating becomes questionable

(Goodman, 1997). It may be better to set a larger initial base beam, which may be

slower for some inputs, and require fewer iterations for others. The base beam size is

limited by beamLimit to ensure the chart size is not allowed to increase in�nitely. As an

edge gets wider (and as the associated tree gets deeper), it is informed by greater context

and more model parameters, and has survived more pruning steps. The variable beam

function is based on the intuition that due to these factors informing wider edges, we

have increased con�dence in them, when compared to narrow edges. Therefore, we do

not need to retain as many of them, so the beam size can be smaller. Additionally, fewer

steps remain between a wide edge and a spanning edge (complete parse). Therefore, we

can use a more restrictive pruning on wide edges as we are less likely to use sub-optimal

edges in building the remaining structure. An example variable beam function is:

variableBeam = baseBeam= log(edge:width+ 1) (4.4)

Varying the beam in this way can cause thrashing | the parser will form small edges,

but will not combine them into larger ones because the beam for large edges is too small.

The balance then is to select a variable beam function and baseBeam which allow for
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reasonable speed and chart size, while maintaining parse accuracy and recall and avoiding

thrashing.

The algorithm for adding edges to the chart, including the comparison with the

variable beam, is outlined in �gure 4.5. Note that we use log-space for scores, so the

beam is subtracted from the best score rather than divided.

A Note on Removing Parents

The algorithm of �gure 4.5 includes a call to the chart.removeEdgeAndParents method.

The dynamic programming algorithm requires that, for every edge e, when an edge with

a matching signature is found, if e has a score lower than the new edge, e is replaced

with the new edge. In a standard bottom-up parser, no parents of e would yet exist in

the chart, because they would have a span larger than the edge we are replacing, and

spans are parsed by increasing size. In addition, edges in a traditional parser point only

to an edge signature as a child | not a speci�c edge. Thus any edges on the agenda

whose child is replaced remain valid, as they will link automatically to the new edge.

The implementation we use is di�erent in two ways:

� Closure is carried out after each WORD edge is received by the PARSER. Thus it is

possible that the old edge we are removing has parent edges which have already

been added to the chart.

� The edges added to the agenda are hard-linked to children in the chart. Each

stores its score (weight w and total t), rather than recomputing it by tracing back

through the chart each time. This allows for faster edge comparison. The score is

based on the score of child edges, so if child edge scores change, the score of the

parent becomes invalid. Rather than recompute scores and reassign children, we

simply remove the obsolete parent edges and rebuild them through closure on the

new edge.
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boolean chart.dynamicAdd(edge) {

if (edge.t > threshold) {

if (edge.t > bestTotal(edge.l,edge.r) - beam(baseBeam,edge.width)) {

if (chart.getNode(edge.r).hasEdge(edge.signature)) {

oldEdge = chart.getNode(edge.r).get(edge.signature);

if (edge.t > oldEdge.t) {

// remove old edge with matching signature

// remove any edges which dominate old edge

chart.removeEdgeAndParents(oldEdge);

// matching edge may still be scheduled for processing

agenda.remove(oldEdge);

chart.add(edge);

return true;

} else {

return false;

}

} else {

// no matching edge already in chart

chart.add(edge);

}

} else {

return false;

}

}

else

return false;

}

Figure 4.5: Dynamic programming and pruning algorithm for adding edges to CHART.

Given an edge, dynamic programming conditions are checked to ensure the probability

of the edge is above the threshold and (if a competing edge with the same signature exists

in the chart) within the beam. If conditions are met, the edge is added to the CHART.
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When an edge is created and added to the AGENDA, an upward link is created from its

daughters. The parent-removal operation is carried out recursively by tracing these links.

An example is shown in �gure 4.6

4.7.2 Thresholds

Collins (1997) reports a 36% average speed increase for parsing when an absolute thresh-

old is used in addition to the beam search. Only edges with total t � threshold are

added to the chart. In a manner similar to iteratively growing the beam, if no parse is

found after complete processing of all word edges, the threshold is decreased. We imple-

ment this type of pruning, but, similar to Goodman (1997), could not gain a signi�cant

increase in speed as a result.

4.7.3 Overparsing

Hall and Johnson (2003) introduces overparsing as a technique to ensure that early stages

of parsing do not strongly bias later stages. They use a chart parser with a PCFG to

perform a �rst stage of parsing on word lattices, and supply the trees found by this

stage to a more sophisticated lexicalized probabilistic parser (that of Charniak (2001)).

The �rst stage of parsing is continued until a complete parse is found. At this point

they let n equal the number of edges in the chart. Parsing with the PCFG is continued

(overparsing) until the chart size is some factor k times n. Now there are presumably

many complete parses for the second stage model to rescore.

We adapt this idea to a single stage process. Due to the restrictions of beam search

and thresholds, the �rst parse found by the model may not be the model optimal parse.

We therefore employ overparsing, further extending the base beam by the beam increment

and parsing again. We continue this process as long as extending the beam results in an

improved best parse score. The basic algorithm is adapted and shown in �gure 4.7. Note

that extending the beam can sometimes lead to a decrease in the best parse score, due
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STOP(VP,bought)

STOP(S,bought)

RIGHT(S,bought)

LEFT(S,bought)

RIGHT_NPB(NPB,cars)

LEFT_NPB(NPB,cars)

STOP(NNS,cars)

WORD(cars)

STOP(NPB,cars)

LEFT(VP,bought)

RIGHT(VP,bought)

STOP(VBD,bought)

WORD(bought)

RIGHT(VP,bought)

LEFT(VP,bought)

RIGHT(VP,bought)

STOP(VBD,bought)

WORD(bought)

RIGHT(VP,bought)

RIGHT_NPB(NPB,carts)

LEFT_NPB(NPB,carts)

STOP(NNS,carts)

WORD(carts)

STOP(NPB,carts)

RIGHT_NPB(NPB,John)

LEFT_NPB(NPB,John)

WORD(John)

STOP(NPB,John)

LEFT(S,bought)

(a) (b)

STOP(NNP,John)

Figure 4.6: Example of removal of parent edges from chart. After the WORD edge for

(cars) is read, the parse tree (a) is added to the chart on closure. On reading the next

WORD edge (carts) from the lattice, the new VP edge (b) is created, and replaces the VP

of the same signature in (a). At this point, the connection in (a) is broken, as shown.

The higher edges must be removed from the chart. (Note that the link cannot simply be

moved to the new edge, as the weights and totals for the higher edges are based on the

weights and totals of the old RIGHT(VP,bought) edge.)
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to the nature of beam search. If this occurs, the beam is reset to the beam which gave

the best parse score, and the parse is repeated, ending the process.

4.8 Implementation Details

The lattice parser is implemented using Java, which was chosen for its ease of prototyping,

an extensive existing class library (including �le I/O using GZip compression, hashing

and resizable arrays, sorted sets), its well integrated debugging and exception handling,

its class-based inheritance structure, its support of literate programming by generating

documentation (using javadoc), and its garbage collection model which manages memory

without the need for express deallocation. Java also is portable and widely available on

most platforms. One drawback is that Java is often slower than other object-oriented

languages, such as C++.

Standard object-oriented design, Java code style, and javadoc documentation guide-

lines were followed. The implementation was optimized using a pro�ler (Borland Opti-

mizeIt) to eliminate memory leaks and to discover and streamline any bottlenecks in the

parsing process.

A notable optimization, suggested by Bob Carpenter, is the calculation of parameter

values during training. The original implementation of Collins (1999) retains counts

gathered from training data, and uses the counts to calculate parameter values as needed

at runtime. We �rst implemented this type of parameter calculation, but found it was

too slow, using Java. Instead, values of all P (Y j�i(X)) for all observed outcomes Y , all

contexts X, and all back-o� levels �i(X) are calculated and their log value is stored in a

hash table (the estimator), during training. At runtime, values can be quickly recovered

using the context and outcome as a hash key. This results in more memory usage,

but faster implementation as all parameters are only calculated once, during training.

Estimators are created for each parameter type in table 3.1.
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// INITIALIZATION

input word lattice, prune to N-best

topologically sort edges into input stream

// ITERATIVE PARSE

while ((parses.size == 0) && (baseBeam < beamLimit)) {

parses = parse(input stream, baseBeam);

if (parses.size == 0)

baseBeam = baseBeam + beamIncrement;

}

// OVERPARSING (only if we exited first loop with a parse)

if (parses.size != 0) {

// start previous best score at lowest value

previousBestScore = -1 * Double.MAX_VALUE;

bestScore = bestScore(parses);

while ((bestScore > previousBestScore) && (baseBeam < beamLimit)) {

previousBestScore = bestScore;

baseBeam = baseBeam + beamIncrement;

parses = tagAndParse(input stream, baseBeam)

bestScore = bestScore(parses);

}

// repeat best parse if overparsing results in a lower probability

if (bestScore < previousBestScore) {

baseBeam = baseBeam - beamIncrement;

parses = tagAndParse(input stream, baseBeam);

}

}

Figure 4.7: Addition of overparsing to the lattice chart-parsing algorithm.
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The lattice parser operates with an interactive interface, supporting several functions:

� training the tagger and parser using Penn Treebank format �les | model parame-

ters are saved to a �le for later recall

� selecting a previously trained set of model parameters

� parsing sentences as they are input by a user

� extracting sentences from Penn Treebank format �les and parsing them

� parsing word lattices, N -best lattices, and N -best lists from SLF �les

� runtime modi�cation of the beam search, overparsing, and various output variables

(e.g., headword printing, NPB printing, etc.)
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Chapter 5

Experimental Results

One of the goals of this work is to implement the �rst word lattice parser based on the

head-driven probabilistic model of Collins (1999). Parsing word lattices directly provides

useful syntactic and semantic information, such as parse trees, which are not supplied by

the simpler language models, such as the N -gram model. By changing the focus of the

search from the most probable word sequence to the most probable parse, we expect to

extract the most probable syntactic structure from the parse tree, which will be rooted

in a probable word sequence. Most work in syntactic language modelling for speech

recognition focuses on achieving the lowest word error rate (WER) | a measure of the

correctness of a proposed word sequence. To evaluate our model, we propose measuring

both the parsing accuracy and the accuracy of the word sequence extracted from the

lattice, as compared to reference parse trees and utterance transcriptions. Only Roark

(2001) has previously reported both kinds of evaluation on a single system.

5.1 Overview

The word lattice parser is evaluated with several metrics | WER, labelled precision and

recall, crossing brackets, and time and space resource usage. We conduct evaluations

using two experimental sets | strings and word lattices. First we optimize settings

79
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(thresholds, variable beam function, base beam value) for parsing using development test

data consisting of strings for which we have annotated parse trees. Second, we measure

the performance of the parser for several acoustic model / language model mixtures using

word lattices and N -best lists for which we have the true utterance transcriptions.

The parsing accuracy for parsing word lattices is not directly evaluated as we do not

have annotated parse trees for comparison. Furthermore, standard parsing measures such

as labelled precision and recall are not directly applicable in cases where the number of

words di�ers between the proposed parse tree and the gold standard.

We also examine the impact of our sub-optimal beam search and the use of overparsing

on parse accuracy, WER, and the time required for parsing. Results show scores for

parsing strings which are lower than the original implementation of Collins (1999). The

WER scores for this, the �rst application of the Collins (1999) model to parsing word

lattices, are comparable to other recent work in syntactic language modelling, and better

than a simple N -gram model trained on the same data.

The training and test data, and evaluation results are explained in more detail in the

following sections.

5.2 Parsing Strings

The lattice parser can parse strings by creating a single-path lattice from the input (all

word transitions are assigned an input probability of 1.0). Whereas many language mod-

elling works for speech recognition report only WER, we are also interested in the parsing

accuracy of the model. We measure parsing accuracy using sections of the Penn Treebank

(Taylor et al., 2003), for which we have annotated reference parses for comparison.
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5.2.1 Training and Test Data

The lattice parser was trained on sections 02-21 of the Wall Street Journal portion of

the Penn Treebank (Taylor et al., 2003) (39,832 sentences; 989,860 words). Development

testing was carried out on section 23 (2,416 sentences; 59,100 words) in order to select

model thresholds and variable beam functions. Final testing was carried out on section 00

(1,921 sentences; 88,494 words), and scores are reported for sentences with � 40 words.

5.2.2 Evaluation Metrics

We use the PARSEVAL measures (Black et al., 1991) to measure the parsing performance:

Labelled Precision (LP) = number of correct constituents in proposed parse

number of constituents in proposed parse

Labelled Recall (LR) = number of correct constituents in proposed parse

number of constituents in reference parse

Crossing Brackets (CB) = number of constituents in proposed parse which violate

constituent boundaries with a constituent in reference parse

0 Crossing Brackets (0 CB) = percentage of sentences for which there are no crossing

brackets

� 2 Crossing Brackets (� 2 CB = percentage of sentences for which there are 2 or

fewer crossing brackets

5.2.3 Variable Beam Function

The variable beam functions were developed by starting with the intuition that the

beam should be smaller at larger widths, as described in section 4.7.1. We initially used

b̂ = b=width, and found that the rate of decrease in beam size was too large | the

beam became too small as width increased. This meant a large base beam (admitting

many narrow edges) was required for convergence. We worked from this result towards
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a relationship which strongly pruned at large widths, to speed up parsing, and had a

beam/width relationship of order less than linear, to ensure enough narrow edges were

admitted. The resulting format, where w is the edge width, b is the base beam, and k is

a constant, is:

b̂ =
b

log((w + k)=2)
(5.1)

The rate of decrease in the beam slows as width increases. The rate is controlled by

o�setting the width by k | the application of k has greater e�ect on smaller widths.

Performance for various values of k were compared against the original (Collins, 1999)

implementation with constant beam b = 10000, or, in the natural log domain we use,

b � 9.

5.2.4 Thresholds

Collins (1997) reports a 36% increase in parsing speed when an absolute threshold is

applied during parsing. All edges with score below the threshold are pruned. As with

Goodman (1997), we were unable to duplicate this speed-up.

When a constant threshold is applied, it usually prunes edges that would otherwise

be removed by the beam pruning. Since the beam search only admits one edge per edge

signature (left node, right node, and category) to the chart, the bene�t of applying a

threshold in this case is limited to pruning that single edge. That is, the threshold will

only prune out edge signatures for which no edge exists with score above the threshold.

With relatively little savings in chart size, this technique risks eliminating important

edges from the chart. For instance, assume for some sentence or lattice, only one com-

plete parse (with non-zero probability) exists. The threshold can eliminate some very

low probability edge e within that parse, resulting in no complete parse being found.

Application of the beam does not eliminate e unless a more probable edge with the same

signature and span is found. The problem of not �nding any parse outweighs the ben-

e�t of further reduction in chart size, so we do not apply an absolute threshold in the
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Exp. Beam Function OP LP (%) LR (%) CB 0 CB (%) �2 CB (%)

Ref b N 88.7 89.0 0.95 65.7 85.6

1a b N 56.8 59.9 3.81 25.9 59.3

1b b Y 79.6 74.8 2.12 42.0 69.1

2a b=log((w + 1)=2) N 71.3 67.6 2.75 34.2 56.5

2b b=log((w + 1)=2) Y 81.3 81.3 1.88 50.0 75.0

3a b=log((w + 2)=2) N 79.4 80.6 1.89 46.2 74.5

3b b=log((w + 2)=2) Y 80.8 81.4 1.70 44.3 80.4

4a b=log((w + 4)=2) N 58.9 64.4 3.43 27.6 62.6

4b b=log((w + 4)=2) Y 69.8 72.1 2.14 35.8 70.4

Table 5.1: Results for parsing section 0 (� 40 words) of the WSJ Penn Treebank: OP

= overparsing, LP/LR = labelled precision/recall. CB is the average number of crossing

brackets per sentence. 0 CB, � 2 CB are the percentage of sentences with 0 or � 2

crossing brackets respectively. The beam function gives the dependence of the beam b̂

on the base beam, b, and width w. Ref is Model II of (Collins, 1999).

experiments reported in this chapter.

5.2.5 Experimental Results and Analysis

Experiments were carried out while varying the variable beam function (section 4.7.1),

and with or without overparsing (section 4.7.3). The variable beam is a function of

the base beam and the edge width (number of words dominated by the edge). The

base beam is a tuple in the log domain: (base; increment; final), where the base is

increased by the increment until a parse is found, the final limit is exceeded, or until

overparsing is complete. The base beam was set to (8; 1; 20), which was found to be a good

balance between speed and the probability of �nding a valid parse on most sentences.

Experimental results are given in table 5.1.

The scores for all experiments are lower than the scores of the original implementation

of model II (Collins, 1999). Experiment 1 of table 5.1 corresponds to the experimental
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Exp. Beam Function OP Time
Number of Edges

(per word)

1a b N 22h41m 3025

1b b Y 38h04m 3516

2a b=log((w + 1)=2) N 19h32m 1920

2b b=log((w + 1)=2) Y 28h20m 2920

3a b=log((w + 2)=2) N 15h01m 1491

3b b=log((w + 2)=2) Y 22h51m 2055

4a b=log((w + 4)=2) N 11h03m 871

4b b=log((w + 4)=2) Y 15h33m 1220

Table 5.2: Parsing times and chart size for section 0 of the WSJ Penn Treebank. OP =

overparsing.

conditions of the reported reference work. We have con�rmed the reported PARSEVAL

scores for the reference work. Comparing experiment 1b against the reference, there is a

di�erence of approximately 10% in the labelled precision and recall scores, and a di�erence

of 1.2 in the average number of crossing brackets, with our implementation scoring lower

on all metrics. Our model performs best with beam function b=log((w + 2)=2). This

is likely because the beam functions b and b=log((w + 1)=2) admit many narrow edges,

and are less selective. They can quickly converge to a low probability parse, and stop.

The more restrictive beam function b=log((w + 4)=2) prunes too strongly, reducing the

search and the probability of �nding the model-optimal parse. The di�erence in scores for

all experiments with our model, compared to the reference work, is likely due in part to

di�erences in POS tagging. Tag accuracy for our model is 93.2%, whereas for the original

implementation of Collins (1999), model II achieved tag accuracy of 96.75%. We restrict

the tag-set for each word to those suggested by a simple �rst-stage tagger (section 4.3).

For unknown words, we use the tag predicted by the model. Collins (1999) considers all

tags for each word, except unknown, for which he uses the tagger of (Ratnaparkhi, 1996).

Note that we cannot fall back to the tagging of Ratnaparkhi (1996) for unknown words,



5.3. Parsing Word Lattices 85

as that tagging system is not adapted for tagging word lattices.

The utility of the overparsing extension can be seen in table 5.1. Each of the PARSE-

VAL measures improves when overparsing is used. Table 5.2 reports the times required

for parsing section 0 with and without overparsing. In addition, the average number of

edges added to the chart per word is reported. This measure shows how overparsing and

the variable beam function a�ect the chart size. Generally, we see that larger chart sizes

and longer parse times correspond with improved performance. The greater k is in the

variable beam function, the fewer edges are admitted by the beam. This also corresponds

to faster parsing, and lower accuracy. One exceptional case is the use of a constant beam

(experiments 1a/1b in table 5.2). The total number of edges admitted (per word) by the

constant beam is lower because convergence occurs at a lower base beam: more narrow

edges are admitted during parsing, resulting in faster convergence. Overparsing results

in parsing times approximately 1.5 to 2 times longer than equivalent best-�rst parsing.

Thus we have an instantiation of the common accuracy/speed trade-o�.

5.3 Parsing Word Lattices

The success of the parsing model as a language model for speech recognition is measured

both by parsing accuracy (parsing strings with annotated reference parses), and by WER.

WER is measured by parsing word lattices and comparing the parse tree sentence yield

to the reference transcription (using NIST SCLITE for alignment and error calculation).

We assume the parsing performance achieved by parsing strings (see section 5.2) carries

over to parsing word lattices. We cannot measure PARSEVAL scores for parsing word

lattices as we do not have annotated parse trees for the true utterances of the HUB-1

corpus. Also, the PARSEVAL scores are not adapted to compare parses for which the

number of words di�ers. For parsing lattices we use the same model and implementation

as we used for parsing strings (a string is simply parsed as a single-path word lattice).
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Additionally, the same parse output (PTB-format trees) is reported, and the training

and test corpora are from the same domain (Wall Street Journal). Thus we expect

parsing scores to be similar for parsing lattices. However, Roark (2001) (using a di�erent

parsing model) reports that parsing accuracy (LR/LP) decreases by approximately 3%

when using a pruned version of the Penn Treebank for training and testing in which all

punctuation is removed. Punctuation is a strong indicator of phrasal boundaries, so the

impact of removing it is severe. As our training and test data for the word lattice tasks do

not contain punctuation, a similar decrease in parse accuracy is likely. The parsing task

is further complicated by the joint nature of the search | the parser �nds the best parse

and word sequence simultaneously. There exists the possibility for competition between

�nding the best word sequence (as scored by the acoustic model and lattice language

model) and �nding the best parse tree (as scored by our model).

The remainder of this section describes the training and test corpora for word-lattice

parsing and word-list rescoring, and the evaluation of the parser using N -best lattices

and lists.

5.3.1 Training and Test Data

Two di�erent corpora are used in training the parsing model on word lattices:

� sections 02-21 of the WSJ Penn Treebank (the same sections as used to train the

model for parsing strings) [1 million words]

� section \1987" of the BLLIP corpus (Charniak et al., 1999) [20 million words]

The BLLIP corpus is a collection of Penn Treebank-style parses of the three-year

(1987-1989) Wall Street Journal collection from the ACL/DCI corpus (approximately

30 million words)1. The parses were automatically produced by the parser of Charniak

1The sentences of the HUB-1 corpus are a subset of those in BLLIP. We removed all HUB-1 sentences
from the BLLIP corpus used in training.
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(2001). As the memory usage of our model corresponds directly to the amount of training

data used, we were restricted by available memory to use only one section (1987) of the

total corpus. Using the BLLIP corpus as training data, we expect to get lower quality

parse results due to the higher parse error in the automatically annotated BLLIP corpus,

when compared to the manually annotated Penn Treebank. The WER is expected

to improve, as the BLLIP corpus has much greater lexical coverage (i.e., random error

will be lower because the parameters are based on more training samples). Training on

the BLLIP corpus shows the relationship between the amount of training data and the

accuracy of our model for the speech recognition task. For better comparison against

the trigram model stored in the HUB-1 lattices (the \Lattice Trigram", trained on 40

million words), and the work of Hall and Johnson (2003) (trained on the entire BLLIP

corpus) we train on the BLLIP corpus, section 1987.

The corpora are modi�ed using a utility provided by Keith Hall to convert newspaper

text to speech-like text, before being used as training input to the model. Speci�cally:

1. numbers are converted to words (60 ! sixty)

2. all punctuation is removed

We test the performance of our parser on the word lattices from the NIST HUB-1

evaluation task of 1993. This corpus was chosen for several reasons:

� it has been used in other works on syntactic language modelling (e.g Chelba, 2000;

Roark, 2001; Hall and Johnson, 2003)

� it is in the HTK standard lattice format, with silences and other dis
uencies re-

moved

� 50-best paths found by A* search are available (Chelba, 2000; Roark, 2001)

� the lattices are derived from a set of utterances produced from Wall Street Journal

text | the same domain as the Penn Treebank and the BLLIP training data
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� the corpus was produced by professional readers, thus the speech is relatively clear

and the resulting lattices are sparse (an advantage for our system in terms of

available memory resources)

There is an important di�erence in the tokenization of the HUB-1 corpus and the

Penn Treebank format. Contractions (i.e., he's, wasn't, jones') are split in the Penn

Treebank (i.e., he 's, was n't, jones '), but not in the word lattices. The Treebank

format cannot easily be converted into the lattice format, as often the two parts fall into

di�erent parse constituents. We use the lattices modi�ed by Chelba (2000) in dealing

with this problem | contracted words are split into two parts. The �rst part takes the

original time span and is assigned an acoustic probability of 1.0. The second part is

assigned zero time and the original acoustic probability. We di�er from Chelba (2000)

and instead follow Hall and Johnson (2003) in that the Treebank tokenization is also

used for measuring the WER | recognition of at least part of a conjunction should be

credited. The reference transcriptions are processed and conjunction words are split to

correspond to the modi�ed lattices.

The word lattices of the HUB-1 corpus are annotated with an acoustic probability,

a, and a trigram probability, lm, for each edge. The lattice trigram model was trained

on 40 million words with a 20,000 word open vocabulary. These scores are used to guide

the parsing, as described in section 4.4. Recall that word edges of single-path lattices

(created when parsing strings) are assigned an input probability of 1.0. For other word

lattices, the input probability is log(Pinput) = �(log a)+�(log lm), where a is the acoustic

score and lm is the trigram score stored in the lattice. The edge weight is a combination

of these scores with the model parameters:

w = �(log a) + �(log lm) + log s (5.2)

where w is the log edge weight, and s is the inside probability assigned by the parameters

of the parsing model. Some, such as Roark (2001), set � to 1.0 and instead apply
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a scaling factor to increase the score assigned by their model (i.e., they use a factor


(log s)). Chelba and Jelinek (2000) optimizes 
 at 16 for the HUB-1 corpus. This factor

is adopted by Roark (2001) and Hall and Johnson (2003). However, according to Mangu

et al. (1999), models converge to a parse faster if a factor is used to reduce the dynamic

range of acoustic score rather than increase that of the language model. Our experiments

on a development test subset (the �rst 10 lattices of the HUB-1 corpus) con�rmed this.

We use � = 1=16 as the optimal acoustic model weight | this is inversely related to a


 value of 16, used in other work. We do not apply any scaling factor, 
, to the inside

score, s, of our model. The factor � is applied to the lattice trigram score, lm, stored in

the lattice in order to adjust the relative weight of lm against the score of our model, s.

Chelba (2000) and Roark (2001) interpolate the language model score (s) of their parsers

with the lattice trigram score (lm) and �nd that an interpolation value of � = 0:4 is

optimal. Hall and Johnson (2003) does not use the lattice trigram scores, i.e., � = 0. In

our work, values of � from 0 to 2.0 in 0.5 increments were tested using the variable beam

function b̂ = b=log((w + 2)=2) and base beam of (5; 1; 20).

5.3.2 Test Results and Comparison to Related Work

The performance of the parsing model as a language model for speech recognition is

evaluated on the NIST HUB-1 corpus, a set of 213 word lattices in the HTK Standard

Lattice Format, previously pruned to the 50-best paths by Roark (2001). The model

was tested with and without overparsing, and for various variable beam functions and

trigram weighting factors (�).

Parameter Optimization

The variation of lattice trigram weighting factors (�) is shown in table 5.3. The optimal

value of � = 1 shows that the language model probabilities of the lattice trigram are

complementary to those of our model. Factors of � > 1:0 strongly in
uence the choices
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Exp. � Training Size
WER

S D I T

1 0 1M 10.9 3.6 1.5 16.0

2 0.5 1M 10.5 3.6 1.5 15.6

3 1 1M 10.4 3.3 1.5 15.2

4 1.5 1M 9.4 3.3 1.2 13.9

5 2 1M 9.3 3.2 1.2 13.7

6 0 20M 9.3 3.2 1.2 13.7

7 0.5 20M 9.1 3.1 1.1 13.3

8 1 20M 9.0 3.1 1.0 13.1

9 1.5 20M 9.1 3.2 1.2 13.5

10 2 20M 9.2 3.2 1.2 13.6

Table 5.3: Comparison of di�erent values of the trigram weighting factor: Parsing N -

best word lattices with variable beam function: b̂ = b=log((w + 2)=2), no overparsing. S

= substutitions (%), D = deletions (%), I = insertions (%), T = total WER (%). 1M

training = Penn Treebank, sections 02-21. 20M training = BLLIP, section 1987.

of the parser, and make the contribution of our model's parameters less signi�cant (i.e.,

the same result is obtained as with the lattice trigram alone). The score for our model

interpolated with the lattice trigram (� = 1) is better than that for our model alone

(� = 0). This is likely due to the incorporation of additional training data by mixing

the models | our model is trained on 1 million or 20 million words and the interpolated

lattice trigram is trained on 40 million words. This is supported by the fact that the

improvement gained by interpolating the lattice trigram is greater for interpolation with

our model trained on only the Penn Treebank (1 million words). We choose � = 1 for

the remaining experiments.

The application of the model to 50-best word lattices is compared to rescoring the

50-best paths individually (50-best list parsing). The results are presented in table 5.4.
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Exp. Training Size Lattice/List OP
WER Number of Edges

S D I T (per word)

1 1M Lattice N 10.4 3.3 1.5 15.2 1788

2 1M List N 10.4 3.2 1.4 15.0 10211

3 1M Lattice Y 10.3 3.2 1.4 14.9 2855

4 1M List Y 10.2 3.2 1.4 14.8 16821

5 20M Lattice N 9.0 3.1 1.0 13.1 1735

6 20M List N 9.0 3.1 1.0 13.1 9999

7 20M Lattice Y 9.0 3.1 1.0 13.1 2801

8 20M List Y 9.0 3.3 0.9 13.3 16030

Table 5.4: Results for parsing HUB-1 N -best word lattices and lists: OP = overparsing,

S = substutitions (%), D = deletions (%), I = insertions (%), T = total WER (%).

Variable beam function: b̂ = b=log((w + 2)=2). Training corpora: 1M = Penn Treebank

sections 02-21; 20M = BLLIP section 1987.

Parsing N-best Lattices vs. N-best Lists

The number of edges added to the chart per word forN -best lists is an order of magnitude

larger than for corresponding N -best lattices, in all cases. Since the WERs are similar,

we see that parsing in N -best lists, we are doing more work that parsing N -best lattices,

for the same result. Thus parsing lattices is more eÆcient. This is because common

substrings are only considered once per lattice. For N -best list parsing, these common

substrings can be parsed up to N times. We see from table 5.4 that overparsing has little

e�ect on the WER. The word sequence most easily parsed by the model (i.e., generating

the �rst complete parse tree) is likely also the word sequence found by overparsing.

Although overparsing may have little e�ect on WER, we know from the experiments of

section 5.2.5 that overparsing increases parse-accuracy. This introduces another, more

complex, speed-accuracy trade-o�. Depending on what type of output is required from

the model (i.e., parse trees or strings), the additional time and resource requirements of

overparsing may or may not be warranted.
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Comparison to Previous Work

The NIST HUB-1 corpus has been previously parsed using syntactic language models

(e.g., Hall and Johnson, 2003; Chelba, 2000; Roark, 2001). The results of our best

experiments for lattice- and list-parsing are compared with previous results in table 5.5.

The oracle WER for the HUB-1 corpus is 3.4%. For the pruned 50-best lattices, the

oracle WER is 7.8%. We see that by pruning the lattices using the trigram model, we

already introduce additional error. Because of the memory usage and time required for

parsing word lattices, we were unable to test our model on the original \acoustic" HUB-1

lattices, and are thus limited by the oracle WER of the 50-best lattices, and the bias

introduced by pruning using a trigram model (see section 2.6.2). Where available, we

also present comparative scores of the sentence error rate (SER) | the percentage of

sentences in the test set for which there was at least one recognition error. Note that due

to the small (213 samples) size of the HUB-1 corpus, the di�erences seen in SER may

not be signi�cant.

We see signi�cant improvement in WER for our model trained on 1 million words

of the Penn Treebank compared to a trigram model trained on the same data (Roark,

2001)| the \Treebank Trigram" noted in table 5.5. This indicates that the larger context

considered by our model allows for performance improvements over the trigram model.

The improvement seen for our model trained on BLLIP 1987 over the lattice trigram is

not as large. As we reach lower WER scores, it is likely that the remaining errors are quite

diÆcult (large number of ambiguities, ungrammatical constructions, con
icting acoustic

and language model scores). Thus we experience diminishing returns as we improve our

model by training on more data. Finally, the BLLIP 1987 corpus is smaller than the 40

million words used for the lattice trigram model, so the comparison is not completely

appropriate.

The current best performing models, in terms of WER, for the HUB-1 corpus, are

the parser of Charniak (2000) and of Roark (2001), applied to N -best lists by Hall
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Model N -best List/Lattice Training Size WER (%) SER (%)

Current Model

List 20M 13.1 71.0

Lattice 20M 13.1 70.4

List 1M 14.8 74.3

Lattice 1M 14.9 74.0

Oracle (50-best lattice) Lattice 7.8

Charniak (2000) List 40M 11.9

Roark (2001) List 1M 12.7

Hall (2003) Lattice 30M 13.0

Chelba (2000)(� = 0:4) Lattice 20M 13.0

Lattice Trigram Lattice 40M 13.7 69.0

Roark (2001) Lattice 1M 15.1 73.2

Treebank Trigram Lattice 1M 16.5 79.8

No language model Lattice 16.8 84.0

Table 5.5: Comparison of WER with for parsing HUB-1 words lattices with other works.

SER = sentence error rate. WER = word error rate. \Speech-like" transformations were

applied to all training corpora. Current model settings: b̂ = b=log((w+ 2)=2), � = 1=16,

� = 1, with overparsing.
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and Johnson (2003). N -best list parsing, as seen in our evaluation, requires repeated

analysis of common subsequences, a less eÆcient process than directly parsing the word

lattice. The WERs of Roark (2001), a top-down probabilistic parsing model, are notable

because they are achieved by training on only 1 million words of the Penn Treebank. The

di�erence in WER between our parser and those of Charniak (2000) and Roark (2001)

applied to word lists may be due to the lower PARSEVAL scores of our system. Xu et al.

(2002) report inverse correlation between labelled precision/recall and WER. We achieve

73.2/76.5% LP/LR on section 23 of the Penn Treebank, compared to 82.9/82.4% LP/LR

of Roark (2001) and 90.1/90.1% LP/LR of Charniak (2000).

5.3.3 Time and Space Requirements

The implementation of the parsing model, using Java, is costly in terms of computational

resources. The algorithms and data structures have been optimized using a memory and

processor pro�ler. Parsing section 00 of the Penn Treebank on average takes approxi-

mately 20 hours, on an Intel Pentium 4 (1.6GHz) Linux system using 1GB memory. This

is partially due to the need to manually invoke additional Java garbage collection cycles

to free memory which is no longer used (for example, edges which have been deleted from

the chart). We suggest that the implementation may be faster using another program-

ming language which allows direct access to memory resources, such as C++.

5.4 Summary of Results

The parser has been evaluated using both strings and word lattices. Evaluation shows

disappointing results for the PARSEVAL suite of measures. When compared to the orig-

inal implementation of the parsing model (Collins, 1999), our implementation performs

poorly. There are several di�erences between the systems which may contribute to the

di�ering scores, including the POS tagging, and the dynamic search and pruning heuris-
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tics. Our system uses a large amount of computational resources, necessitating the use

of a variable beam function which reduces parse quality. Although the parsing scores are

not competitive with the state-of-the-art systems for strings, the parser implemented in

this work builds parse trees from word lattices directly, at a signi�cant computational

savings over parsing N -best word lists. The accuracy of the parser at selecting the true

utterance, given a word lattice or list, is comparable to other recent implementations

of syntactic language modelling. The WER achieved by a mixture of the trigram and

head-driven probabilistic parsing model probabilities is lower than that of the trigram

model alone.
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Chapter 6

Conclusions

In this work, we set out to apply the parsing model of Collins (1999), one of the current

state-of-the-art parsers, to word lattices. Successful integration of high-level language

models and acoustic models for speech recognition was long thought a computationally

intractable problem, due to the large size of word lattices. Recently, through increased

computing resources, optimization of algorithms, and development of sequential coupling,

such integration has become possible. Success, in terms of word error rate (WER), has

been seen using probabilistic parsing systems as language models for speech recognition,

but the head-driven model had not been previously applied.

Incorporation of high-level language models (including parsing models) into auto-

mated speech recognition has been accomplished previously, using three main coupling

paradigms | tight, incremental, and sequential. Our review of the current literature

showed that sequential coupling is the best suited for integration of high-level language

models, as integration using the other coupling techniques leads to a large increase in

complexity.

We reimplemented the parsing model II of Collins (1999), using Java, adapting it

to the domain of word lattices. The parsing task is more complex than parsing strings,

as the search encompasses �nding the best parse given many possible word sequences.

97
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The word sequences can be stored in a compressed format | a word lattice | or the

N best paths can be parsed individually. As we were interested in extracting data from

word lattices for use in automated speech understanding, we expanded upon traditional

measures of success, and evaluated the performance of the model using both parsing

scores (the PARSEVAL measures), and WER.

The system was evaluated over two sets of data: strings and word lattices. As PAR-

SEVAL measures are not applicable to word lattices, we measured the parsing accuracy

using string input. The resulting scores were lower than the original implementation of

the model (Collins, 1999), applied to strings. Despite this, the model was successful as a

language model for speech recognition as measured by WER. Here, the system performs

better than a simple N -gram model trained on the same data, while simultaneously

providing syntactic information in the form of parse trees.

6.1 Summary of Contributions

6.1.1 Review of the State-of-the-Art

We present the �rst thorough review of syntactic language modelling applied to word

lattices and N -best lists, including an analysis of the various coupling paradigms used to

combine acoustic and language models. We suggest expanding the widely used measures

of success to include attempts to measure the ability of a language model to extract high-

level information, such as syntactic structure and semantic relationships, from speech.

6.1.2 Implementation of Probabilistic Parsing for Word Lat-

tices

We implement, using Java, a probabilistic parser which takes strings or HTK Standard

Lattice Format word lattices as input. The modular implementation allows for di�erent
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grammars (parameterizations of probabilistic parsing) to be easily incorporated. Vari-

ous tunable dynamic programming heuristics speed up the parsing process with varying

impact on parsing scores.

6.1.3 Head-Driven Parsing for ASR

The parsing model II of Collins (1999) was reimplemented and its parameter set was used

as the grammar for the word lattice parser. Evaluation results show that head-driven

probabilitic parsing can improve upon WER while extracting parse trees for use in speech

understanding.

6.2 Limitations and Future Directions

6.2.1 Limitations

Time, Space, and Accuracy

The current implementation of the parser requires almost one gigabyte of memory, and

runs about 100 times slower than original model II parser of Collins (1999). Further

optimization, or reimplementation in another programming language, will almost cer-

tainly decrease parse times and memory requirements. In order to run the parser with

reasonable time and memory resource usage, its dynamic search parameters (beam and

thresholds) must be restrictive, decreasing the probability of �nding the model-optimal

parse. Parsing scores reported for our implementation are lower than those reported in

Collins (1999). This may be due to di�erences in POS tagging accuracy. Future work

should focus on improving the parse accuracy of our implementation.
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Scaling Up

The speech corpus used in this work consists of rather small lattices, with fewer ambigui-

ties than are often produced by \real word" systems. The HUB-1 corpus can be described

as \lab speech." Lab speech | speech corpora obtained from professional speakers read-

ing a script in controlled conditions | is usually easier to interpret than real world

speech. Testing of this model on a spontaneous speech corpus would be rather diÆcult,

as we do not account for dis
uencies such as �lled pauses, corrections, etc. As mentioned

above, we also encounter memory and time resource limitations with the sparse lattices

of the HUB-1 corpus. The current implementation would likely not be able to parse the

larger lattices of spontaneous speech. Adaptations to the parsing model, as described in

the following section, would be required.

6.2.2 Future Directions

Parsing Spontaneous Speech

The current model has been evaluated on \lab speech." Adaptations to the parsing

model, or use of a preprocessor which �lters dis
uencies from word lattices, could be

made in order to parse spontaneous (i.e., non-lab) speech. Such a system, even with

�ltering of dis
uencies, would need to be domain-speci�c. General spontaneous speech

contains many colloquial expressions (often ungrammatical), which would receive low

scores from our parser. A manually-parsed corpus of large-vocabulary speech would be

required to train the parser to operate over such data. Additionally, spontaneous speech

corpora are often plagued by lower quality acoustic data, which would result in much

larger word lattices. Due to the time and space requirements of our implementation, we

would likely need to restrict a spontaneous speech lattice to its N -best paths, which can

result in bias and increased WER.
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High-level Language Modelling for Related Tasks

Automatic speech recognition (ASR) is just one of several related tasks for which a parsing

model, such as that implemented in this work, may be useful as a language model.

Optical character recognition (OCR) is another area where the true word sequence is

often ambiguous. Character-level bigram probabilities are often used in OCR tasks such

as recognizing postal addresses, reading data from cheques, etc. For applications of OCR

where the text contains full sentences (i.e., document scanning), a language model can

be used to �nd the most likely sentence. The sequential coupling paradigm could also be

applied to this problem. A simple model could be used to generate possible sentences in

the form of a list or word lattice, and a high-level language model could rescore or �lter

the hypotheses. Application of a parsing model to written text would likely work better

than for ASR, as typed text does not contain silences or dis
uencies such as �lled pauses

and self-corrections. Scaling up to real-world text would not be as problematic as scaling

to real-world speech, as written text is more often grammatical, and similar in style to

the corpora available to train parsing models.

Unlexicalized Parsing for Speech Recognition

Klein and Manning (2003) reports competitive parsing scores for an unlexicalized prob-

abilistic parser. The parsing framework developed in this work could be adapted to

incorporate such new unlexicalized models. A mixture of unlexicalized parsing with N -

gram scores would likely reduce WER signi�cantly, as knowledge used in unlexicalized

parsing has a degree of independence from that used by an N -gram model. Additionally,

unlexicalized parsing is more portable to other domains, as most domain-speci�c infor-

mation is found in the lexicon. When compared to lexicalized systems for parsing word

lattices (e.g.,, the parsers of this work and Hall and Johnson (2003)), such a system has

the potential to be simpler, faster and more portable.
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Word-Predictive Language Modelling

The parser developed in this work does not predict words in the manner of traditional

language-models (i.e., we do not calculate next-word probabilities P(wijw1 : : : wi�1)).

Future work could focus on formalizing the parsing approach as a strictly word-predictive

language model, which would search for the best word sequence instead of the best parse

tree. Chelba (2000) presents a general approach to such formalization. Note that this

may result in reduced parse quality. Choice of search strategy (best parse or best word

sequence) should be made based on the goals of the task.

Incorporation of Additional Features

The parser developed in this work could be combined with a speech recognizer which

uses prosody to detect phrasal boundaries (punctuation). Word lattices annotated with

phrasal boundaries could be useful | in text, punctuation is an important factor for

accurate parsing.

New Corpora and Evaluation Metrics

The NIST HUB-1 corpus, with 213 samples, is rather small. We encourage development

of a corpus of word lattices along with annotated parse trees for the true utterances. This

would allow simultaneous testing of WER and PARSEVAL scores on the same data. Such

a corpus could be pruned to N -best paths using dynamic selection of N as described in

this work. Additionally, an alternative for the PARSEVAL metrics could be developed

for speech, where the number of words may di�er between the reference and proposed

parses.



Appendix A

Details of the Parsing Algorithm

A.1 Algorithms for Chart Closure

closure() {

while (agenda not empty) {

edge = agenda.pop();

// chart.add applies dynamic prog. constraints, may reject edge

if (chart.add(edge)) {

unaryExtend(edge);

adjacentEdges = chart.node(edge.right());

for each (leftEdge in adjacentEdges) {

binaryAdjoin(leftEdge, edge);

}

}

}

}

Figure A.1: Chart closure algorithm.
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unaryExtend(edge) {

// newEdge properties and weight set according to table A.2 during

// creation of newEdge

switch(edge.type) {

case STOP {

possibleParents = parent(edge.H);

for each (parent in possibleParents) {

if (parent == NPB)

newEdge = new LEFT_NPB(child=edge,P=NPB);

else {

possibleSubcats = subcat(P,H);

for each (subcat in possibleSubcats) {

newEdge = new LEFT(child=edge,P=parent,S=subcat);

}

}

}

} case LEFT {

possibleSubcats = subcat(P,H);

for each (subcat in possibleSubcats) {

newEdge = new RIGHT(child=edge,P=parent,S=subcat);

}

} case LEFT_NPB {

newEdge = new RIGHT_NPB(child=edge,P=NPB);

} case RIGHT {

newEdge = STOP(child=edge,H=child.P);

} case RIGHT_NPB {

newEdge = STOP(child=edge,H=child.P);

}

newEdge.t = newEdge.w + outside(newEdge);

}

agenda.add(newEdge);

}

Figure A.2: Unary edge extension algorithm.
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binaryAdjoin(leftEdge,rightEdge) {

// newEdge type and parameters as listed in binary tables

// A.3-A.4. newEdge weight set during edge creation.

if (leftEdge.type == COORD) {

if (rightEdge.type == LEFT) {

// LEFT -> COORD LEFT

newEdge =

LEFT(c1=leftEdge,c2=rightEdge,c=leftEdge.W)

else if (rightEdge.type == LEFT_NPB) {

// LEFT_NPB -> COORD LEFT_NPB

newEdge =

LEFT_NPB(c1=leftEdge,c2=rightEdge,c=leftEdge.W)

.

.

.

}

newEdge.t = newEdge.w + outside(newEdge);

agenda.add(newEdge);

}

Figure A.3: Binary edge creation algorithm. A sample of the creation of new edges is

shown. New edges are created depending on the types of the leftEdge and rightEdge,

using binary edge creation tables from section A.2.



106 Appendix A. Details of the Parsing Algorithm

A.2 Edge Creation Rules and Parameters

New Edge Edge Category Comments

STOP

P = none H = POS

a STOP edge is created for

each POS supplied by tagger

T = POS W = c1:W

V = c1:verb D = 0

c = none p = none

u = 0 subcat = fg

COORD

P = none H = CC

created for all words with

POS=CC

T = CC W = c1:W

V = no D = 0

c = none p = none

u = 0 subcat = fg

PUNCT

P = none H = (: or; )

created for all words with

POS=f:;g

T = (: or; ) W = c1:W

V = no D = 0

c = none p = none

u = 0 subcat = fg

Table A.1: Initialization: Creation of FINAL edges from WORD edges. A WORD edge (c1)

is supplied to the parser with a list of POS candidates. Edges of the FINAL group are

created and added to the AGENDA. The weight of the new edge is initialized to �a � �lm,

using acoustic and language model (i.e., trigram) scores from the input lattice.
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Edges New Edge Category Parameters

New=LEFT P = parent(c1:H)
Ph(HjP ;T ;W ) � Plc(subcatjH;P ;T ;W )

c1=STOP S = subcat(P;H)

New=LEFT NPB P = NPB

Ph(HjP ;T ;W )
c1=STOP H�1 = c1:H

T�1 = c1:T

W�1 = c1:W

New=RIGHT a S = subcat(P;H) Pls(STOP jc1:D; P;H;T ;W ) �
Pcc(cjP; null; H;null; T ;null;W ) �
Pp(pjP; null; H;null; T ;null;W ) �
Prc(SjH;P ;T ;W )

c1=LEFT

New=RIGHT NPB P = NPB
PNPBls(STOP jH�1;T�1;W�1) �
Pcc(cjP; null; H;null; T ;null;W ) �
Pp(pjP; null; H;null; T ;null;W )

c1=LEFT NPB H�1 = c1:H

T�1 = c1:T

W�1 = c1:W

New=STOP b P = none Prs(STOP jc1:D; P; c1:H;T ;W ) �
Pcc(cjP;H; null;T; null;W;null) �
Pp(pjP;H; null;T; null;W;null)

c1=RIGHT H = c1:P

u = c1:u+ 1

New=STOP b P = none PNPBrs(STOP jH�1;T�1;W�1) �
Pcc(cjP;H; null;T; null;W;null) �
Pp(pjP;H; null;T; null;W;null)

c1=RIGHT NPB H = c1:P

u = c1:u+ 1

aonly created if c1:S = fg
bonly created if u < maximum unary chain length

Table A.2: Unary extension. An edge (c1) is extended (bottom-up) using the unary

rules of the parser grammar. The weight of the new edge is: w = c1:w � PPr(P; T;W ) �

parameters, where parameters are given in the table. V , T , andW are passed up from c1

in all cases. Fields c and p are reset to none and D is set to 0. Except where speci�ed, P ,

H, and u are passed up from c1, and subcat is reset to fg. P = parent(c1:H) indicates

an edge is created for all possible P for the given H. S = subcat(P;H) indicates an

edge is created for all possible frames for the given P , H. Probabilities of incomplete

punctuation and coordination (sections 3.2.5 and 3.2.6) are included.
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Edges New Edge Category and Parameters

New=LEFT c = c1:W

c1=COORD

c2=LEFT Parameters: None

New=LEFT NPB c = c1:W

c1=COORD

c2=LEFT NPB Parameters: None

New=LEFT p = c1:W

c1=PUNCT

c2=LEFT Parameters: None

New=LEFT NPB p = c1:W

c1=PUNCT

c2=LEFT NPB Parameters: None

New=LEFT a D = add(c2:D; c1:V ) V = (c1:V or c2:V )

c1=STOP S = c2:S � c1:H c = none

(complement) p = none

c2=LEFT Parameters:bc Pcc � Pp�

Pl1(c1:H; c1:T; c2:c; c2:pjc2:S; c2:D; c2:P; c2:H; c2:T ; c2:W ) �
Pl2(c1:W jc1:T ; c1:H; c2:c; c2:p; c2:S; c2:D; c2:P; c2:H; c2:T ; c2:W )

New=LEFT D = add(c2:D; c1:V ) V = (c1:V OR c2:V )

c1=STOP S = c2:S c = none

(adjunct) p = none

c2=LEFT Parameters: Pcc � Pp�

Pl1(c1:H; c1:T; c2:c; c2:pjc2:S; c2:D; c2:P; c2:H; c2:T ; c2:W ) �
Pl2(c1:W jc1:T ; c1:H; c2:c; c2:p; c2:S; c2:D; c2:P; c2:H; c2:T ; c2:W )

New=LEFT NPB V = (c1:V OR c2:V ) H�1 = c1:H

c1=STOP T�1 = c1:T W�1 = c1:W

c2=LEFT NPB c = none p = none

Parameters: Pcc � Pp�

PNPBl1(c1:H; c1:T; c2:c; c2:pjc2:H�1; c2:T�1; c2:W�1) �
PNPBl2(c1:W jc1:T ; c1:H; c2:c; c2:p; c2:H�1; c2:T�1; c2:W�1)

aOnly created if c1:H 2 c2:S.
bPcc = Pcc(c2:cjc2:P; c1:H; c2:H ; c1:T; c2:T ; c2:W; c2:W )
cPp = Pp(c2:pjc2:P; c1:H; c2:H ; c1:T; c2:T ; c2:W; c2:W )

Table A.3: Binary adjunction creating EXTEND[LEFT] edges. Edges (c1 and c2) are joined,

creating a new edge. The weight of the new edge is: w = c1:w � c2:w � PPr(P; T;W ) �

parameters. Category �elds are passed up from c2, except where speci�ed. u is reset to

0 for the new edge.
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Edges New Edge Category and Parameters

New=RIGHT c = c2:W

c1=RIGHT

c2=COORD Parameters: None

New=RIGHT NPB c = c2:W

c1=RIGHT NPB

c2=COORD Parameters: None

New=RIGHT p = c2:W

c1=RIGHT

c2=PUNCT Parameters: None

New=RIGHT NPB p = c2:W

c1=RIGHT NPB

c2=PUNCT Parameters: None

New=RIGHT a D = add(c1:D; c2:V ) V = (c1:V or c2:V )

c1=RIGHT S = c1:S � c2:H c = none

c2=STOP p = none

(complement) Parameters:bc Pcc � Pp�

Pr1(c2:H; c2:T; c1:c; c1:pjc1:S; c1:D; c1:P; c1:H; c1:T ; c1:W ) �
Pr2(c2:W jc2:T ; c2:H; c1:c; c1:p; c1:S; c1:D; c1:P; c1:H; c1:T ; c1:W )

New=RIGHT D = add(c1:D; c2:V ) V = (c1:V OR c2:V )

c1=RIGHT S = c1:S c = none

c2=STOP p = none

(adjunct) Parameters: Pcc � Pp�

Pr1(c2:H; c2:T; c1:c; c1:pjc1:S; c1:D; c1:P; c1:H; c1:T ; c1:W ) �
Pr2(c2:W jc2:T ; c2:H; c1:c; c1:p; c1:S; c1:D; c1:P; c1:H; c1:T ; c1:W )

New=RIGHT NPB V = (c1:V OR c2:V ) H�1 = c2:H

c1=RIGHT NPB T�1 = c2:T W�1 = c2:W

c2=STOP c = none p = none

Parameters: Pcc � Pp�

PNPBr1(c2:H; c2:T; c1:c; c1:pjc1:H�1; c1:T�1; c1:W�1) �
PNPBr2(c2:W jc2:T ; c2:H; c1:c; c1:p; c1:H�1; c1:T�1; c1:W�1)

aOnly created if c2:H 2 c1:S.
bPcc = Pcc(c1:cjc1:P; c1:H; c2:H ; c1:T; c2:T ; c2:W; c2:W )
cPp = Pp(c1:pjc1:P; c1:H; c2:H ; c1:T; c2:T ; c2:W; c2:W )

Table A.4: Binary adjunction creating EXTEND[RIGHT] edges. Edges (c1 and c2) are

joined, creating a new edge. The weight of the new edge is: w = c1:w �c2:w �PPr(P; T;W )�

parameters. Category �elds are passed up from c1, except where speci�ed. u is reset to

0 for the new edge.
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